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Abstract

This thesis introduces the design of KroneDB, a system for compressing time series data using
the Kronecker decomposition, while allowing for efficient evaluation of relational queries includ-
ing selection, projection, join, and aggregates (SPJA). KroneDB allows for a tunable trade-off
between compression ratio and approximation error, while exploiting periodic patterns within the
data to improve the compression. The compressed data can be queried directly without prior
decompression while reducing the runtime of most queries. Updates can be applied directly to
the compressed data and naturally enable value imputation and outlier detection in the updating
process. By embedding our approach into the Functional Aggregate Queries (FAQ) framework,
we show that it can be applied to a wide range of fundamental problems.



Zusammenfassung

Diese Arbeit präsentiert KroneDB, ein System zur Komprimierung von Zeitreihendaten unter
Verwendung der Kronecker Decomposition. Es unterstützt dabei die effiziente Auswertung von re-
lationalen Queries, welche Selection, Projection, Joins und Aggregates (SPJA) beinhalten können.
Das Verhältnis zwischen Kompressionsrate und Approximationsfehler kann den Anforderungen
entsprechend angepasst werden. Dabei werden periodische Muster in den Daten genutzt, um die
Kompression zu verbessern. Queries können direkt auf den komprimierten Daten ausgeführt wer-
den. Die Laufzeit ist dabei in der Regel kürzer als auf den unkomprimierten Daten. Updates lassen
sich direkt auf die komprimierten Daten anwenden, wobei zusätzlich fehlende Werte ergänzt und
Ausreisser erkannt werden. Das Einbetten unseres Ansatzes in das Functional Aggregate Queries
(FAQ) Framework zeigt das Potential für eine Vielzahl weiterer Anwendungen auf.
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Chapter 1

Introduction

Time series data is collected in many different fields, such as finance, logistics, meteorology, man-
ufacturing, and many more. Whenever there are any sensors involved that measure anything over
time, a time series is created. Think about sensors in machinery, meteorological stations, or traffic
counters. The purpose of collecting this data is to use it for further analysis such as forecasting
or anomaly detection.

Time series data is usually stored in specialized time series databases, which are optimized
for storing and querying time series data [DF14]. A major component of these optimizations
is data compression. The field of data compression in databases is very broad but mainly fo-
cuses on compressing sparse data with lossless compression techniques such as run-length encod-
ings [LMF+16, AMF06, RVH93], frame of Reference encoding [LMF+16], dictionary compression
[LMF+16, AMF06], delta encoding [RVH93], and null suppression [AMF06, RVH93].

A widely used lossy compression technique in time series databases is to compress clusters
of continuous data points by sampling a single point from or taking the average over the cluster.
Some more advanced techniques based on Principal Component Analysis (PCA) or Singular Value
Decomposition (SVD) are less commonly used [Fu11].

This thesis introduces a system called KroneDB which uses the Kronecker decomposition
[Loa00] to get a lossy compression of dense time series data with a tunable compression ratio
and approximation error. The Kronecker decomposition is especially well suited for time series
that contain periodic patterns because this structural information can be used to improve the
compression of the data. Furthermore, the Kronecker decomposition allows for multiple similar
time series to be compressed together, which further improves the compression rate.

In addition to the efficiency gains in storage, the Kronecker decomposition also allows for
efficient aggregations, like calculating the sum or sum of products of features directly over the
compressed data. These aggregations are very common in the analysis of time series data and
can be combined to calculate more complex metrics, like the variance, standard deviation, or
correlations. Relation queries including selections, projections, joins, and aggregations (SPJA)
are supported and can be executed directly on the compressed data.

KroneDB levarages traditional relational databases to store the compressed data and to query
it efficiently using SQL. This avoids the need for specialized time series databases.

Additionally, KroneDB provides update methods to efficiently update the compressed data
when new data points are added to the time series. This is especially important in a streaming
scenario, where new data points are added to the time series in real-time. Not only can the new
data points be added to the compressed data very efficiently, but also, can gaps in the new data
be filled and outliers can be detected and removed, with little to no overhead.

Our approach is also discussed within the context of the Functional Aggregate Query (FAQ)
framework [AKNR16]. By showing how our work integrates naturally with FAQ, we effectively
enable its use across a wide range of fundamental problems beyond query evaluation in databases
including constraint satisfaction problems, linear algebra (matrix chain multiplication, discrete
Fourier transform), satisfiability, inference and learning in probabilistic graphical models, machine
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learning (cost functions, covariance matrices, learning), and tensor networks in physics.

1.1 Motivation

This work is motivated by the increasing amount of time series data that is collected, stored,
and analyzed. To store and analyze this data, specialized time series databases are used which
compress the data by sampling and averaging older data points and providing specialized data
structures to efficiently process time series data. In general, dense data is not well supported by
relational databases and is usually stored in specialized databases or extracted into specialized
analysis and machine learning tools. The Kronecker decomposition is a promising approach to
compress dense data to store and query it in relational databases. This allows us to avoid the need
for many specialized systems and to use the very well-established and highly optimized relational
database management systems (RDBMSs) instead.

1.2 Contributions

A system called KroneDB is introduced that implements these methods and can be used to
compress, query, and update time series data using any RDBMS like DuckDB [RM19] or a custom
implementation using Python and NumPy.

The main contribution of this thesis is an investigation of the methods that can be used to
compress, query, and update time series data using the Kronecker decomposition.

• The many choices that need to be made when using the Kronecker decomposition for a
specific dataset are presented and discussed and their effects are shown directly on real-
world data.

• Given a query including selection, projection, join, and aggregates (SPJA) and a relational
database, where some of the relations are decomposed using Kronecker decomposition, we
show how to rewrite the original query to observe the decomposition and thereby allow for
more efficient execution.

• We introduce an efficient approach to update a decomposed relation in the compressed
domain. Our approach also naturally allows for value imputation and outlier detection.

• The query rewriting and optimization are additionally shown using the FAQ framework,
which allows for easy inclusion of decomposed relations into larger and more complex queries
and shows that this approach is not limited to SPJA queries but can be extended to many
more fundamental problems.

• The compression ratio and approximation error of the Kronecker decomposition are evaluated
on real-world data and it can be shown that for temperature measurements, we achieve a
compression ratio of 1:1500 with a root mean square error (RMSE) of 3°C and a compression
ratio of 1:300 with an RMSE of just 1.5°C for a temperature range of 57.3°C.

• The runtime of the queries evaluated on real-world data shows a 1.3x to 2.3x speedup at
a 0.0% to 0.7% deviation from the real result for the sum and a 1.4x to 2.8x speedup at a
0.5% to 3% deviation for the sum product when executed using DuckDB.

1.3 Outline

The rest of this thesis is structured as follows: Chapter 2 will introduce the Kronecker decompo-
sition and the FAQ framework in detail. The architecture of KroneDB together with a motivating
example is presented in Chapter 3. The analysis of all the different choices for the Kronecker de-
composition and their effects on the compressed data is presented in Chapter 4. How queries need
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to be rewritten and optimized to work with the compressed data is shown in Chapter 5 together
with experimental results on real-world data using KroneDB to execute the queries. Updating
together with value imputation and outlier detection is presented in Chapter 6. How KroneDB
fits into the FAQ framework is shown in Chapter 7. Related work to time series databases and the
Kronecker decomposition is introduced in Chapter 8. In Chapter 9, some open ends are discussed
and possible future work is presented. Finally, Chapter 10 contains the conclusion of this thesis.

8



Chapter 2

Preliminaries

In this chapter, we introduce the most important concepts, notations, and naming conventions,
that are used throughout this thesis.

In Section 2.1, we introduce the Kronecker decomposition, showing that it is a kind of low-rank
approximation and explain how it can be constructed using the singular value decomposition. In
Section 2.2, we introduce the framework of Functional Aggregate Queries (FAQ), discuss how we
can represent database queries as FAQs, and how this representation can be used to optimize the
query evaluation.

2.1 Kronecker Decomposition

In this section, we discuss how a matrix can be decomposed into a sum of Kronecker products. We
start by defining the Kronecker Product. Then we show how a matrix can be decomposed using
Low-Rank Approximation [RV22] with singular value decomposition (SVD) [KL80], and finally
how to use the Low-Rank Approximation to get the Kronecker decomposition [Loa00].

2.1.1 Kronecker Product

Definition 1. Given two matrices S ∈ Rms×ns and P ∈ Rmp×np , the result of their Kronecker
product S ⊗ P is defined as an ms × ns block matrix, where the block (i, j) is the product sijP
[Loa00]. To keep the terminology consistent throughout the thesis, we call S the scaling-matrix,
P the period-matrix and the result of the Kronecker product S⊗P the data-matrix D ∈ Rmd×nd ,
where md = msmp and nd = nsnp.

Example 1. Consider the following two matrices S ∈ R3×2 and P ∈ R2×2:

S =

 s11 s12

s21 s22

s31 s32

 and P =

[
p11 p12

p21 p22

]
.

Then, S ⊗ P is defined as

 s11P s12P

s21P s22P

s31P s32P

 =



s11p11 s11p12 s12p11 s12p12

s11p21 s11p22 s12p21 s12p22

s21p11 s21p12 s22p11 s22p12

s21p21 s21p22 s22p21 s22p22

s31p11 s31p12 s32p11 s32p12

s31p21 s31p22 s32p21 s32p22


= D,
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where D ∈ R6×4.

Another definition of the Kronecker product is that every element dij of the result matrix
D ∈ Rmd×nd is defined as

dij = sisjs · pipjp , (2.1)

where sisjs and pipjp are elements of the scaling and period matrices S ∈ Rms×ns and P ∈ Rmp×np

respectively, such that

i = (is − 1) ·mp + ip and j = (js − 1) · np + jp, (2.2)

where i ∈ [md], j ∈ [nd], is ∈ [ms], js ∈ [ns], ip ∈ [mp], and jp ∈ [np]. This definition will be used
throughout the thesis.

2.1.2 Low-Rank Approximation

The goal of low-rank approximation is to find the best rank-k matrix Dk to approximate the
data-matrix D ∈ Rmd×nd , where k < min{md, nd}. The matrix rank is the largest number of
linearly independent rows or columns in a matrix. [RV22]

The best approximation can be found using the singular value decomposition (SVD) of the
matrix D ∈ Rmd×nd , which is defined as D = UΣV ⊤, where U ∈ Rmd×md is the orthogonal
matrix whose columns are the left singular vectors, Σ ∈ Rmd×nd is the diagonal matrix of singular
values and V ∈ Rnd×nd is the orthogonal matrix whose columns are the right singular vectors
[KL80]. The singular values are ordered on the diagonal of Σ such that σ11 ≥ σ22 ≥ · · · ≥
σmin{md,nd}min{md,nd} ≥ 0. To construct Dk we use the first k singular values and vectors:

Dk = U [:, : k]Σ[: k, : k]V [:, : k]⊤,

where U [:, : k] ∈ Rmd×k are the first k columns of U , Σ[: k, : k] ∈ Rk×k are the first k rows and
columns of Σ, and V [:, : k] ∈ Rnd×k are the first k columns of V . Using this construction, it holds
that

∥D −Dk∥F ≤ ∥D −Xk∥F
for every rank-k matrix Xk ∈ Rmd×nd , where ∥ · ∥F is the Frobenius norm. [RV22]

The low-rank approximation can be used to compress, de-noise, or complete a matrix [RV22].
In this thesis, in Chapter 4 we will focus on the compression and observe the de-noising effect.
The completion capabilities will be used in Section 6.2.

2.1.3 A Low-Rank Kronecker Product Decomposition

Definition 2. The Kronecker decomposition is a low-rank approximation, where the goal is to
find the best rank-k approximation Dk ∈ Rmd×nd of the data-matrix D ∈ Rmd×nd such that

Dk =

k∑
r=1

Sr ⊗ P r, (2.3)

where Sr ∈ Rms×ns and P r ∈ Rmp×np are the scaling and period matrices for the rth rank of the
decomposition, nd = nsnp, and md = msmp.

Example 2. Consider a data-matrix D ∈ R6×4, which is decomposed into a sum of Kronecker
products, such that Sr ∈ R3×2 and P r ∈ R2×2 for all r ∈ [k] such that,

Sr =

 sr11 sr12
sr21 sr22
sr31 sr32

 and P r =

[
pr11 pr12
pr21 pr22

]
.
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Then, the Kronecker decomposition of rank-k is defined as

Dk =

 s111P
1 + · · ·+ sk11P

k s112P
1 + · · ·+ sk12P

k

s121P
1 + · · ·+ sk21P

k s122P
1 + · · ·+ sk22P

k

s131P
1 + · · ·+ sk31P

k s132P
1 + · · ·+ sk32P

k

 =

k∑
r=1

Sr ⊗ P r,

where srij and prij are the elements of the scaling and period matrices for the rth rank of the
decomposition.

To achieve this goal, the construction of Dk from Section 2.1.2 is slightly modified. Before com-
puting the SVD, we reshape the data-matrix D ∈ Rmsmp×nsnp into a matrix R(D) ∈ Rmsns×mpnp ,
by vectorizing each block into a column vector and stacking the transposed column vectors into a
matrix. Therefore,

R


 s11P s12P

s21P s22P

s31P s32P


 =



vec(s11P )
⊤

vec(s21P )
⊤

vec(s31P )
⊤

vec(s12P )
⊤

vec(s22P )
⊤

vec(s32P )
⊤


=



s11p11 s11p21 s11p12 s11p22

s21p11 s21p21 s21p12 s21p22

s31p11 s31p21 s31p12 s31p22

s12p11 s12p21 s12p12 s12p22

s22p11 s22p21 s22p12 s22p22

s32p11 s32p21 s32p12 s32p22


.

The SVD R(D) = UΣV ⊤, is used to construct the Kronecker decomposition Dk as

Dk =

k∑
r=1

(vec−1
ms,ns

(U [:, r]) · Σ[r, r])⊗ vec−1
mp,np

(V [:, r]) =

k∑
r=1

Sr ⊗ P r, (2.4)

where vec−1
m,n is the inverse of the vec operator, which reshapes a column vector of length mn into

a matrix of size m×n by dividing it into n vectors of size m and stacking them horizontally. Thus,

vec−1
3,2





s11

s21

s31

s12

s22

s32




=

 s11 s12

s21 s22

s31 s32

 .

The rank-wise scaling and period matrices Sr and P r are constructed as follows:

Sr = vec−1
ms,ns

(U [:, r]) · Σ[r, r] and P r = vec−1
mp,np

(V [:, r]).

The scalar factor Σ[r, r] can be freely distributed into the scaling and period matrices Sr and P r.
In fact, if Sr and Pr are optimal, then it holds that αSr and (1/α)Pr are also optimal for every
α ̸= 0. We generally choose to distribute the scalar factor Σ[r, r] into the scaling-matrix Sr. This
brings the advantage, that the ranks of the period matrix are orthonormal, which will be useful
in Chapter 6. Using the construction from (2.4), it holds that

∥D −Dk∥F ≤ ∥D −Xk∥F

for every matrix Xk ∈ Rmd×nd that is the sum of k Kronecker products. [Loa00]

2.2 Functional Aggregate Queries: FAQ

In Section 7, the Functional Aggregate Query (FAQ) framework is used to represent and evaluate
KroneDB queries. The FAQ framework was introduced by Abo Khamis et al. [AKNR16]. It gives
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syntax and semantics for expressing frequently asked questions across computer science, such as
database queries, graph reachability, and boolean satisfiability. There are efficient algorithms
developed for solving FAQ expressions, e.g. the InsideOut algorithm.

An FAQ expression has the form

ϕ(xf ) =

(f+1)⊕
xf+1∈Dom(Xf+1)

· · ·
(n)⊕

xn∈Dom(Xn)

⊙
S∈E

ψS(xS),

where xf is the tuple of free variables x1, . . . , xf and xf+1, . . . , xn are the bound variables. For
every variable xi there is a fixed set Dom(Xi) that is the domain of xi. The (multi)set E is a set
of hyperedges in a (multi)hypergraph H = (V, E), where V is the set of vertices 1, . . . , n. Every
hyperedge S ∈ E is a subset of the vertices S ⊆ V and has an associated input factor ψS(xS).
The input factors are functions that map tuples from

∏
i∈S Dom(Xi) to elements in the domain

D, of a finite semiring (D,⊕,⊙,0,1). In the semiring (D,⊕,⊙,0,1), ⊕ and ⊙ denote the sum and
product operators, and 0 ∈ D and 1 ∈ D are the additive and multiplicative identities for ⊕ and
⊙, respectively. [AKNR16]

Database queries are represented as FAQ expressions by using the relations as hyperedges in
E and the attributes as variables in V of the hypergraph H.

Consider the relation R
X1 X2 X3 X4

a a 0 1

a a 1 1

a b 0 1

b b 1 0

where X1 and X2 are categorical over {’a’, ’b’} and X3 and X4 are binary. Using the FAQ
framework, we can represent this relation as a factor

ψR(x1, x2, x3, x4) =

{
1 if the tuple (x1, x2, x3, x4) appears in R,

0 otherwise,

where 1 and 0 are the multiplicative and additive identities of the semiring. This means that only
tuples mapped to 1 are stored in the relation and all other tuples are not. This representation
where the factors only return 1 or 0 can always be used without loss of generality by adding virtual
factors that return the actual values of the attributes, as will be shown in the examples below.

FAQ Examples

To explain how a database query is represented as an FAQ, we will provide a few examples, starting
with a projection query.

Projection Consider the query

SELECT X_1 , X_3 FROM R;

which we want to represent as an FAQ. We can do this by using the sum-product semiring
(N,+, ·, 0, 1), where N is the set of natural numbers including 0, to get the FAQ

ϕ1(x1, x3) =
∑
x2,x4

ψR(x1, x2, x3, x4),

where ϕ1 is a function that maps the free variables x1 and x3 to the number of tuples in R that
have the values x1 and x3 in the attributes X1 and X3, respectively. The domains of the attributes
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are Dom(X1) = Dom(X2) = {’a’, ’b’} and Dom(X3) = Dom(X4) = {0, 1}. The domain of ϕ1 is
the cross-product of the domains of the free variables, therefore,

Dom(ϕ1) = Dom(X1)×Dom(X3) = {’a’, ’b’} × {0, 1} = {(’a’, 0), (’a’, 1), (’b’, 0), (’b’, 1)}.

We pass each tuple in Dom(ϕ1) to ϕ1, starting with (’a’, 0). The return values of the factor
ψR(’a’, x2, 0, x4) for every tuple (x2, x4) in Dom(X2)×Dom(X4) are

ψR(’a’, ’a’, 0, 0) = 0,

ψR(’a’, ’a’, 0, 1) = 1,

ψR(’a’, ’b’, 0, 0) = 0,

ψR(’a’, ’b’, 0, 1) = 1.

The individual results are summed up to get ϕ1(’a’, 0) = 2. The same process is repeated for
ϕ1(’a’, 1), ϕ1(’b’, 0) and ϕ1(’b’, 1), which results in

ϕ1(’a’, 0) = 2,

ϕ1(’a’, 1) = 1,

ϕ1(’b’, 0) = 0,

ϕ1(’b’, 1) = 1.

The final result relation T1 is then constructed as

X1 X3

a 0

a 0

a 1

b 1

.

Join For the second example, consider a second relation S

X1 X5

a 0

a 1

b 1

.

The join of R and S with a projection on X1, X3 and X5 is expressed in SQL as

SELECT R.X_1 , R.X_3 , S.X_5 FROM R JOIN S ON R.X_1 = S.X_1;

and in FAQ over the sum-product semiring as

ϕ2(x1, x3, x5) =
∑
x2,x4

ψR(x1, x2, x3, x4) · ψS(x1, x5)

with the domain

Dom(ϕ2) = Dom(X1)×Dom(X3)×Dom(X5) = {(’a’, 0, 0), (’a’, 0, 1), . . . , (’b’, 1, 0), (’b’, 1, 1)}.
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The results for the input tuples are as follows:

ϕ2(’a’, 0, 0) = 2,

ϕ2(’a’, 0, 1) = 2,

...

ϕ2(’b’, 1, 0) = 0,

ϕ2(’b’, 1, 1) = 1.

The result relation T2 is then constructed as

X1 X3 X5

a 0 0

a 0 0

a 0 1

a 0 1

a 1 0

a 1 1

b 1 1

.

Aggregation The last example is a join of R and S with a SUM aggregation on X3 ∗X5 and a
projection on X1. This is expressed in SQL as

SELECT R.X_1 , SUM(R.X_3 * S.X_5)

FROM R JOIN S ON R.X_1 = S.X_1

GROUP BY R.X_1;

and in FAQ over the sum-product semiring as

ϕ3(x1) =
∑

x2,x3,x4,x5

ψR(x1, x2, x3, x4) · x3 · ψS(x1, x5) · x5.

The variables x3 and x5, that stand outside of any factor are shorthands for the virtual factors

ψx3
(x3) = x3 and ψx5

(x5) = x5,

respectively. The function ϕ4 maps the free variable x1 to the sum of the products of the values
of X3 and X5. It does not return the number of tuples in the result relation, but the result of the
aggregation for each group:

ϕ3(’a’) = 1,

ϕ3(’b’) = 1.

The query result T3 is then constructed as

X1 SUM(X3 ∗X5)

a 1

b 1

.
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Chapter 3

KroneDB - An Overview

Query:

SELECT x, SUM(d_1)

FROM D

GROUP BY x;

Query Rewriting

Query over Decomposition:

SELECT s.x, SUM(s.s_1 * p.p_1)

FROM S s JOIN P p ON s.x = p.x

GROUP BY x;

Query Optimization

Optimized Query:

SELECT s.x, s.sum_1 * p.sum_1

FROM (

SELECT x, SUM(s_1) AS sum_1 ...

KronePy: Query Evaluation in NumPy

KroneRelation:

D(x, ridd,d)

KroneDecomposition

Decomposed Relations:

S(x, rids, s, r),

P(x, ridp,p, r)

KroneDuck: Query Evaluation in DuckDB

New Data

∆D(x, ridd,d)

KroneUpdates

Query Result

KroneDB

Figure 3.1: KroneDB Architecture

KroneDB is a database system that uses the Kronecker decomposition to speed up query eval-
uation and save storage space. The greatest strength of KroneDB is the compression and efficient
querying of time series data, like sensor readings. It can however also be used for any other kind
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of dense numerical data. It is implemented in Python and can use NumPy and DuckDB for query
evaluation. The architecture of KroneDB is shown in Figure 3.1. The user provides a query and
a KroneRelation. A KroneRelation is a relation whose columns are strictly separated into key
columns, x, and value columns, d. More details about the KroneRelation are given in Section 4.1.
The KroneRelation is then decomposed using KroneDecomposition, which is a Kronecker decom-
position on the value columns of the KroneRelation. How the KroneDecomposition works and
which parameters can be adjusted are all explained in Chapter 4. The query processing including
rewriting and optimization is explained in Chapter 5. The optimized query is then evaluated using
KronePy or KroneDuck, where KronePy provides a Python API to evaluate specific queries using
NumPy arrays and KroneDuck generates SQL queries and evaluates them using DuckDB. It is
also possible to update the Decomposed KroneRelations directly using KroneUpdates. The update
process additionally allows the approximation of missing values and the detection of outliers. The
outliers can be corrected automatically by replacing them with the approximation. KroneUpdates
are discussed in Chapter 6. Chapter 7 discusses another possibility to represent, rewrite, and
evaluate KroneDB queries using the FAQ framework.

Motivating Example

In this section, we want to motivate the use of the Kronecker decomposition as a compression
method. We will do this by applying the Kronecker decomposition to one particular real-world
time series. We will show how the Kronecker decomposition achieves a better compression ratio
and a better reconstruction accuracy compared to averaging methods, which are commonly used
for the compression of time series.

stn time temperature (°C)
KLO 199001010000 -3.5

KLO 199001010010 -3.4
...

...
...

KLO 202308230420 20.0

KLO 202308230430 19.9

Table 3.1: The current temperature 2 meters above ground in Kloten ZH measured every 10
minutes in °C between 01.01.1990 and 23.08.2023. Data Source: MeteoSwiss [Met].

Consider a meteorological station that measures the current temperature every 10 minutes as
shown in Table 3.1. We want to compress this data to reduce its size on disk while still being able
to reconstruct the original data. Lossless compression methods such as Run-length Encoding or
Bit-packing [Enc] achieve this by removing redundant information in the data.

Plotting a slice of our example dataset in Figure 3.2 reveals an obvious and intuitive pattern
in the data. The temperature rises during the day and falls during the night. We expect the tem-
perature to follow this daily pattern, which we call the daily period of the time series. Therefore,
it should be possible to approximate the temperature along an arbitrary day by using the daily
period and fitting it to the average temperature of this day. How this could look like is shown in
Figure 3.3. Note that we purposefully ignore the fact, that negative temperature values would flip
the daily pattern and will come back to this in Section 4.4.

Comparing Figure 3.3 to the Kronecker decomposition of a single column in Figure 3.4, shows
a similarity between the two. The period-matrix P of the Kronecker decomposition corresponds to
the typical day and the scaling-matrix corresponds to the average temperature for each day. This
suggests that the Kronecker decomposition might be a good method to compress the temperature
data.

To apply the Kronecker decomposition to the temperature data, we first need to decide on
the height of the period-matrix. The natural daily period in the data contains 144 10-minute
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Figure 3.2: The last five days of our time series. The ticks on the Date axis are at 00:00 of the
indicated day. Data Source: MeteoSwiss.



Day 1 06:00 12°C
Day 1 14:00 18°C
Day 1 22:00 15°C
Day 2 06:00 14°C
Day 2 14:00 22°C
Day 2 22:00 18°C
Day 3 06:00 16°C
Day 3 14:00 24°C
Day 3 22:00 20°C


=



Day 1 15°C · TD

Day 2 18°C · TD

Day 3 20°C · TD


,where TD =

 06:00 0.8

14:00 1.2

22:00 1.0



Figure 3.3: Example showing how we can encode the temperature measurements over three days
using a typical day (TD) and the average temperature for each day. It is assumed that on a typical
day, at 06:00 in the morning, the temperature is 20% lower, and at 14:00, the temperature is 20%
higher than the average. At 22:00, the temperature is assumed to be equal to the average.

 s11

s21

s31

⊗

 p11

p21

p31

 =



s11p11

s11p21

s11p31

s21p11

s21p21

s21p31

s31p11

s31p21

s31p31


=



s11P

s21P

s31P


,where P =

 p11

p21

p31



Figure 3.4: Example showing how the period-matrix is repeated if we apply Kronecker decom-
position to a single-column matrix.
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intervals, therefore we choose the height of the period-matrix as mp = 144. To be able to divide
the time series into complete days, we remove the last, unfinished day from the data, such that
md %mp = 0, where md is the height of the data matrix, i.e. the number of data points in the
time series. The modulo operator % returns the remainder of the division. We end up with
mdata = 1′769′328 tuples of data, which corresponds to 12’287 complete days or more than 33
years. The result of the Kronecker decomposition is shown in Figure 3.5. Note that we cleaned the
data by interpolating any missing or erroneous measurements using linear interpolation, before
applying the Kronecker decomposition.

Figure 3.5: The result of applying Kronecker decomposition to the temperature data. For ranks
1, 2, and 3, we show the last five days of the reconstructed data. the scaling- and period-matrices
are shown in the first two columns. The third column shows the Kronecker product Sr ⊗ Rr for
the specific rank r, as described in (2.3). The fourth column shows the reconstructed data up to
the specified rank, i.e. D1, D2, and D3, compared to the original data.

Looking at rank 1, the scaling-matrix follows the general trend over the days. The scaling
values rise from the first to the last day, which corresponds to the temperature rising over the
days. Note that the scaling does not contain the actual average temperatures, but scaling it
by a factor α ≈ 1/13, as discussed in Section 2.1.3, would result in values close to the average
temperatures. The period-matrix in the second column captures the daily period, as expected. It
starts with a downward slope, which corresponds to the temperature falling during the night. Then
it rises, which corresponds to the temperature rising during the day and falls again in the evening.
Comparing the approximation to the original data shows that the reconstructed data follows the
general trend of the original data, but the accuracy varies for the different days. The temperature
range over the first day especially seems to be compressed compared to the original data. The
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same phenomenon can be observed for the second and third days, but it is less pronounced. For the
fifth day, we can observe the opposite effect, where the approximated temperatures are stretched
compared to the original data. The reason for this phenomenon is that the scaling does not only
shift the period-matrix but also stretches it. This is an advantage for the temperature data because
the temperature range is not the same for every day and is in general larger for warmer days.

The expectation from the low-rank decomposition is that the greatest variation in the data is
captured by the first rank and that the second rank should be comparatively small in absolute
values. Comparing the Kronecker products in the third column confirms this expectation. The
second rank can be seen as a correction to the first rank, where specific days divert from the norm.
It therefore influences certain days more than others, which can be seen in the scaling-matrix.
This correction is encoded in the period-matrix and looks again like the daily period, but it is
roughly centered around 0. This means that applying this correction to a certain day will stretch
the daily period if the scaling is positive and compress it if the scaling is negative. We can see
that this is the case for the reconstructed data, where the first days are stretched and the last day
is compressed. This correction seems to fix the major limitations of the rank 1 reconstruction.

Finally, rank 3 is supposed to capture even less variation than rank 2, which is why the range
of the Kronecker Product is even smaller. Looking at the scaling-matrix, we can see that this
correction mainly applies to the fifth day, where the scaling is much larger than for the other
days. The period-matrix is again a correction that is roughly centered around 0 and it seems to
suppress the peak at the hottest time of the day but more prominently it raises the temperature
in the evening. This can be seen in the reconstructed data, where the temperature stays higher
for longer in the evening of the fifth day.

With three ranks, the approximation of the temperature data is already very good. To show
how good the approximation is, we can calculate the root mean square error (RMSE) of the
reconstruction. The Kronecker decomposition is compared to two other methods, simple averaging,
and averaging with linear interpolation. The simple averaging method divides the data into patches
of a certain size and takes the average of each patch. For the approximation, we reconstruct each
datapoint by using the average of the patch that contains the datapoint. The averaging with linear
interpolation method uses the same average but interpolates the average between two patches
linearly to reconstruct the data points between the patch centers.

Kronecker decomposition Averaging

Rank CR RMSE (°C) CR RMSE Rep. (°C) RMSE Int. (°C)
1 142.3 2.06 144.0 3.28 3.21

2 71.2 1.19 72.0 2.73 2.73

3 47.5 0.89 48.0 1.83 1.57

Table 3.2: Comparison of the root mean square error (RMSE) in °C of the Kronecker decompo-
sition and two averaging methods. For the comparison we selected for each rank of the Kronecker
decomposition a patch size for the averaging methods that results in a compression ratio (CR) that
is as close as possible to the compression ratio of the Kronecker decomposition. The slightly larger
compression ratio of the averaging methods is because the Kronecker decomposition stores the
period-matrix in addition to the scaling-matrix. This difference is negligible for the comparison.

In Table 3.2, we compare the RMSE of the Kronecker decomposition to the RMSE of the
simple averaging and averaging with linear interpolation. The compression ratio of the averaging
method corresponds to the patch size, e.g. a patch size of 144 corresponds to a compression ratio
of 144.0, which means that the compressed data is 144 times smaller than the original data. The
patch sizes are chosen to be one day, half a day, and a third of a day respectively. This results in
slightly larger compression ratios than the compression ratios of the Kronecker decomposition. We
will see in Table 3.3 and Figure 3.6 that this does not significantly skew the results. The RMSE
of the Kronecker decomposition is significantly smaller than the RMSE of the averaging method
for all ranks.
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Kronecker decomposition Averaging

Rank RMSE (°C) CR RMSE Rep. (°C) RMSE Int. (°C) CR Rep. CR Int.

1 2.06 142.3 2.38 2.33 66.0 66.0

2 1.19 71.2 1.44 1.48 33.0 44.0

3 0.89 47.5 0.90 1.07 18.0 33.0

Table 3.3: Comparison of the compression ratio (CR) of Kronecker decomposition and two
averaging methods. For the comparison we selected for each rank of the Kronecker decomposition
a patch size for the averaging methods that results in a root mean square error (RMSE) in °C
that is larger or equal to the RMSE of the Kronecker decomposition.

Table 3.3 shows the compression ratio of the Kronecker decomposition compared to the com-
pression ratio of the averaging and the interpolation method respectively. For this comparison,
we selected for each rank of the Kronecker decomposition a patch size for the averaging and the
interpolation method that results in an RMSE that is larger or equal to the RMSE of the Kro-
necker decomposition. Note that the RMSE of the averaging and the interpolation method is in
most cases significantly larger than the RMSE of the Kronecker decomposition. We still achieve a
compression ratio that is more than two times larger for the Kronecker decomposition compared
to the simple averaging method and more than 40% larger compared to the interpolation method
in the worst case.

Expanding this to higher ranks, we can plot the RMSE against the compression ratio for the
Kronecker decomposition and the averaging methods, as shown in Figure 3.6.

Figure 3.6: Approximation root mean square error (RMSE) vs. compression ratio for the Kro-
necker decomposition and the averaging methods. The Kronecker decomposition is shown for
ranks 1 to 72, which corresponds to a compression ratio between 2 and 143. The averaging meth-
ods are shown for patch sizes between 2 and 150.

As will be discussed in Chapter 5, it is possible to evaluate queries over the Kronecker decom-
position without reconstructing the data. The same is true for the simple averaging method, but
not for the averaging with linear interpolation method, where it would be necessary to reconstruct
the data first. It therefore is an unfair comparison for the Kronecker decomposition. However, we
still want to compare the Kronecker decomposition to the interpolation method, because we only
compare the reconstruction accuracy.

We conclude this section by stating that the Kronecker decomposition can capture the daily
period and its variations in the temperature data exceptionally well. Compared to the averaging
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and the interpolation methods, the Kronecker decomposition achieves a better compression ratio
and a better reconstruction accuracy. The Kronecker decomposition is therefore a good choice at
least for this specific dataset.

21



Chapter 4

Data Representation in KroneDB

In this chapter, we will look at the application of the Kronecker decomposition in KroneDB.
For this purpose, in Section 4.1, it is first explained how a KroneRelation is defined and how to
decompose a KroneRelation using the Kronecker decomposition. The following sections discuss
different choices the user has to make when decomposing a KroneRelation. The impacts of these
choices on the approximation result are immediately shown and explained on the specific dataset
used in the motivating example (Section 3). Section 4.2 discusses three different ways to handle
the key columns, which contain potential join keys. Section 4.3 discusses the choice of the rank
and the period length, which influence the compression ratio and the approximation accuracy.
The effects of negative values in the data and how a shift of the whole dataset influences the
approximation are discussed in Section 4.4. Similar to the choice of the key decomposition in
Section 4.2, Section 4.5 discusses the choice of the column decomposition if multiple time series
are stored in the same relation and are decomposed together. The final section, Section 4.6, shows
how the observations made generalize to other time series on three examples.

The main takeaways of this chapter are that only the data columns of a KroneRelation are
decomposed using the Kronecker decomposition. The simplest and always possible choice to
handle the key columns is to do an independent decomposition for each unique combination of
key values, which will be used in the rest of this thesis. A higher rank generally leads to a better
approximation but can become computationally expensive later on. The period length should
be chosen to be a multiple of the natural period in the data. Negative values have the effect of
mirroring the period around the origin, which can be a problem for the approximation. Shifting
the data by a constant value can be used to avoid negative values, but has an additional effect
on how the period amplitude is scaled, which can impact the approximation in a major way.
The collective column decomposition can use the mutual information between similar time series
to improve the compression ratio, compared the individual column decomposition. Finally, the
observations made in this chapter generalize well to the other time series datasets that are tested.

4.1 KroneRelation

A KroneRelation is a relation with a clear separation between the key columns, and the value
columns. Only the key columns can be used as join keys to join with other relations. The value
columns are the columns containing the dense numerical values that we want to decompose using
the Kronecker decomposition. They can not be used as join keys. This has the advantage that
the value columns can be decomposed without affecting the join keys and allows for additional
structural compression techniques, such as factorized computation [OS16]. Because the Kronecker
decomposition relies on the ordering of the rows in the data-matrix, we need to make sure that
the tuples in the KroneRelation have a specific order. To define this order, each KroneRelation
has an index column that contains an orderable value for each tuple. This index column together
with the key columns must create a unique identifier for each tuple in the KroneRelation.
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The original KroneRelation which is put into KronDB is called the data-relation and is denoted
as

D(x, rid,d),

where x = x1, . . . , xn are the key columns, rid (row index) is the index column and d = d1, . . . , dnd

are the value columns. The number of key columns is denoted as n and the number of value
columns, which is the width of the data-matrix, is denoted as nd.

The data-matrix D ∈ Rmd×nd is the matrix containing the value columns of the data-relation,
also called the data-columns. The number of tuples in the data-relation is equal to the height
of the data-matrix md. The rows of the data-matrix are ordered by the index column. In the
general case, each unique combination of the key values creates a new data-matrix. Thus, the
data-relation D(x1, x2, rid, d1, d2, d3, d4) defined as

x1 x2 rid d1 d2 d3 d4

a b 1 d11 d12 d13 d14

a b 2 d21 d22 d23 d24

a b 3 d31 d32 d33 d34

a b 4 d41 d42 d43 d44

a c 1 d51 d52 d53 d54

a c 2 d61 d62 d63 d64

a c 3 d71 d72 d73 d74

a c 4 d81 d82 d83 d84

contains two data matrices

Dab =


d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

 and Dac =


d51 d52 d53 d54

d61 d62 d63 d64

d71 d72 d73 d74

d81 d82 d83 d84

 .

4.1.1 Decomposed KroneRelations

As seen in Section 2.1.3, the Kronecker decomposition decomposes the data-matrix D ∈ Rmd×nd

into the scaling matrices Sr ∈ Rms×ns and period matrices P r ∈ Rmp×np for each rank r.
After decomposing a KroneRelation, we get two new KroneRelations, one for the scaling-

matrices and one for the period-matrices which are called scaling-relation and period-relation
respectively.

The decomposed relations need additional information about how they handle the ranks of the
decomposition. For this purpose, we will add a rank column to the scaling- and the period-relation.
The scaling- and period-relation are then denoted as

S(x, rids, s, r) and P(x, ridp,p, r),

where x = x1, . . . , xn are the key columns, rids and ridp are the index columns, s = s1, . . . , sns

and p = p1, . . . , pnp
are the value columns and r is the rank column. ns is the number of value

columns in the scaling-relation and np is the number of value columns in the period-relation, which
are also the widths of the scaling-matrix and the period-matrix respectively, therefore nd = ns ·np.

If the data-relation has one data-matrix for each unique combination of the key values, then the
scaling and period-relations will have a scaling and a period-matrix for each unique combination
of the key values, because every data-matrix will be decomposed individually. Decomposing the
data-relation D(x1, x2, rid, d1, d2, d3, d4) from the previous section means decomposing each data-
matrix Dab and Dac separately. Using a rank-2 decomposition and a 2× 2 period-matrix, we get
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the following scaling and period matrices:

Dab ≈

[
s11 s12

s21 s22

]
⊗

[
p11 p12

p21 p22

]
+

[
s31 s32

s41 s42

]
⊗

[
p31 p32

p41 p42

]
= S1

ab ⊗ P 1
ab + S2

ab ⊗ P 2
ab

and

Dac ≈

[
s51 s52

s61 s62

]
⊗

[
p51 p52

p61 p62

]
+

[
s71 s72

s81 s82

]
⊗

[
p71 p72

p81 p82

]
= S1

ac ⊗ P 1
ac + S2

ac ⊗ P 2
ac.

These scaling and period matrices are then put into the scaling and period-relations together
with the corresponding key values to get the decomposed KroneRelations

S(x1, x2, rids, s1, s2, r) and P(x1, x2, ridp, p1, p2, r)

containing the tuples

x1 x2 rids s1 s2 r

a b 1 s11 s12 1

a b 2 s21 s22 1

a b 1 s31 s32 2

a b 2 s41 s42 2

a c 1 s51 s52 1

a c 2 s61 s62 1

a c 1 s71 s72 2

a c 2 s81 s82 2

and

x1 x2 ridp p1 p2 r

a b 1 p11 p12 1

a b 2 p21 p22 1

a b 1 p31 p32 2

a b 2 p41 p42 2

a c 1 p51 p52 1

a c 2 p61 p62 1

a c 1 p71 p72 2

a c 2 p81 p82 2

respectively. In the definition of a KroneRelation, the rank column is one of the key columns and
it would be possible to decompose S and P further.

The index columns rids and ridp map the tuples in the scaling- and period-relation to the tuples
in the data-relation according to (2.2). This means that the values d1, . . . , dnd

in a tuple in the
data-relation with the keys x1, . . . , xn and index rid are approximated by the values s1, . . . , sns in
the tuples in the scaling-relation with the keys x1, . . . , xn and index rids and the values p1, . . . , pnp

in the tuples in the period-relation with the keys x1, . . . , xn and index ridp, such that

rid = (rids − 1) ·mp + ridp. (4.1)

The value columns are mapped accordingly such that

dj is decomposed into sjs and pjp iff j = (js − 1) · np + jp. (4.2)

Consider the value d11 in the data-relation. It is the value for the column d1 in the first tuple
together with the index rid = 1. Using (4.1), we get that rids = 1 and ridp = 1 and using (4.2),
we get that js = 1 and jp = 1. The approximation of d11 is therefore calculated as

d11 ≈ s11 · p11 + s31 · p31.

4.2 Individual vs. Collective Key Decomposition

In this section, alternative ways to decompose a data-relation into a scaling-relation and a period-
relation are discussed. This avoids having a separate Kronecker decomposition for each unique
combination of key values. To make the examples clearer, we will only use a single key column,
which is conceptually equal to having multiple key columns and treating each unique combination
of key values separately. Additionally, for simplicity, a rank-1 decomposition is assumed and the
rank column is omitted.

Note that all further sections in the thesis always assume the individual key decomposition.
This includes all experiments. It is trivial to extend all theoretical results to the collective key
decomposition, but it is not the focus of this thesis.
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4.2.1 Individual Key Decomposition

The first example is the individual key decomposition, which has already been used in Section 4.1.1.
For each key, there is a separate decomposition and thus, a separate scaling-matrix and period-
matrix. To decompose the data-relation, we want to group by the key columns and set the rid
column for each group. A data relation together with its decomposed relations could look like
this:

Data-Relation Scaling-Relation Period-Relation

key rid value

a 1 d1

a 2 d2

a 3 d3

b 1 d4

b 2 d5

b 3 d6

b 4 d7

key rid value

a 1 s1

b 1 s2

b 2 s3

key rid value

a 1 p1

a 2 p2

a 3 p3

b 1 p4

b 2 p5

.

4.2.2 Collective Key Decomposition

The first variation is the case where we have a separate scaling-matrix for each unique key value,
but the period-matrix is shared between all key values and the second variation is the other
way around. Both variations are only possible under certain conditions. The influence on the
approximation accuracy and compression ratio of sharing the period-matrix or the scaling-matrix
is comparable to the results in Section 4.5.2 where the period-matrix and scaling-matrix are shared
between columns.

Shared Period Consider a decomposition, where the period length is the same for every key.
Thus, the period-matrix can be shared between all key values. The data-relation must be ordered
to build blocks of mp consecutive rows with the same key value, where mp is the common period
length. The rid column is shared between all key values. The key column can be removed from
the period-relation and the decomposition can be done as follows:

Data-Relation Scaling-Relation Period-Relation

key rid value

a 1 d1

a 2 d2

b 3 d3

b 4 d4

b 5 d5

b 6 d6

key rid value

a 1 s1

b 2 s2

b 3 s3

rid value

1 p1

2 p2 .

Shared Scaling If we have the same number of periods for each key, the scaling-matrix can
be shared. In this case, we can stack the periods for each key value into a single matrix. The
data-relation is ordered such that each set of consecutive rows with the same key value has a
length that is exactly the period length for this key value. This means that we get an alternating
pattern of key values in the data-relation that is repeated after each period length, where the
period length is the length of the combined period that is shared between all key values, which in
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this example is mp = 3. The key column can be removed from the scaling-relation. Thus,

Data-Relation Scaling-Relation Period-Relation

key rid value

a 1 d1

b 2 d2

b 3 d3

a 4 d4

b 5 d5

b 6 d6

rid value

1 s1

2 s2

key rid value

a 1 p1

b 2 p2

b 3 p3

.

4.3 Rank and Period Length

Looking back at the motivating example in Section 3, we started with the data at hand and
concluded that the period length should correspond to a single day to exploit the structure of the
daily period and get a good approximation of the data. There are other considerations to be taken
into account when choosing the period length, even if the data has an obvious and regular period.

One aspect is the compression ratio (CR). The compression ratio is calculated by

CR =
md · nd

(ms · ns +mp · np) · k

where md × nd is the size of the data matrix, ms × ns is the size of the scaling-matrix, mp × np is
the size of the period-matrix and k is the rank of the Kronecker decomposition. For this section,
it is assumed that the number of value columns nd, ns, and np is fixed. How the number of value
columns in the scaling- and period-matrix can be varied is discussed in Section 4.5. Therefore, the
compression ratio is defined as

CR =
md

(ms +mp) · k
.

To get a large rank for a given compression ratio, a period length that is as close as possible to
the square root of the number of data points must be chosen, because md = ms ·mp. If we want a
small rank, we need to choose a very small (or very large) period length to keep the compression
ratio constant. We will see in this section that if we want a low rank, we should always choose a
small period length, instead of a large one.

Rank Having a higher rank for the same compression ratio means that more levels of detail in
the data can be captured. We can think about this as encoding structural information that has a
certain frequency in each rank. The more ranks there are, the more frequencies are persisted in
the Kronecker decomposition. They are not actual frequencies, as would be the case in a Discrete
Fourier Transform (DFT) based compression, but it is structural information that applies to a
certain subset of the data. Consider the Kronecker decomposition with a period length of 1.5 days
in Figure 4.5, where the first three ranks encode something that looks like different frequencies.

In general, to get a better approximation of the original data, a higher rank allows us to capture
more levels of detail in the data. However, we need to be aware that certain aggregates are more
expensive to calculate for higher ranks. We will go into specifics about the problem of calculating
aggregates over high-rank Kronecker decompositions in Section 5.3.7.

Period Length It is generally preferable to keep the period relatively small because the period
is completely static (per rank) and can only be scaled by a scaling factor. This means that trends
that have a smaller frequency than the period but differ from one period to the next cannot be
represented in a single rank.
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Consider the temperature measurements from the motivating example in Section 3. The as-
sumption was that the temperature has a daily period and that the period length should therefore
be one day. However, the temperature also has a natural yearly period and the period length could
also be one year. Instead of 12,000 days where each day can be scaled independently, we would
have 33 years where all days in a year are scaled together. The comparison of the two Kronecker
decompositions is shown in Figure 4.1. The period matrices of the two Kronecker decompositions
look almost as if they were describing the same structure. However, the period in the first row
describes the structure of a single day, while the period in the second row describes the structure
of a whole year. The yearly period fluctuates a lot because it tries to capture the structure of all
365 days in a single function. The daily period on the other hand is very smooth, because it only
needs to capture the structure of a single day, and the structure of the years is captured by the
scaling-matrix. Looking at the approximation, we can see that the Kronecker decomposition with
the daily period can capture the variation in the data much better than the Kronecker decom-
position with the yearly period, even though the compression ratio is much higher for the daily
period. The approximation of the yearly Kronecker decomposition looks like an average of the
data, what it essentially is, because it is forced to have a uniform year, which will be a type of
average of all the years in the data.

The comparison of the two decompositions for further ranks is shown in Figure 4.2. As we can
see, choosing a yearly period is not a good idea, because it is significantly worse at capturing the
structure of the data for low and for high ranks.

Figure 4.1: Comparison of the Kronecker decompositions with period length 1 day and 1 year
for the last 3 years of the temperature dataset. The first row shows the Kronecker decomposition
with a period length of 1 day, where the period-matrix describes the structure of a single day.
The second row shows the Kronecker decomposition with a period length of 1 year, where the
period-matrix describes the structure of a whole year.

For every period length, there is a mirrored period length, which is the number of scaling
factors. This means for every period length mp, where mp ·ms = md, there is a mirrored period
length m′

p, where m
′
p · m′

s = md, such that m′
p = ms and m′

s = mp. A selection of mirrored
periods is plotted in Figure 4.3. The main observation to be made is that it is usually better to
choose a period length that is smaller than the square root of the number of data points, i.e. to
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Figure 4.2: Comparison of the approximation error for daily and yearly periods for different
ranks. The error is calculated as the root mean squared error (RMSE) between the original data
and the approximation. The error for the daily period is significantly lower than the error for the
yearly period. The first ten ranks for each period length are marked using a ”+” sign, where rank
1 is the rightmost rank with the highest compression ratio and rank 10 is the leftmost rank with
the lowest compression ratio.

Figure 4.3: Mirrored Periods for different period lengths. The mirrored period pairs are plotted
in the same color. The smaller periods, with a period length smaller than the square root, are
dashed. The square root in black is the mirrored period of itself. The first ten ranks for each
period length are marked using a ”+” sign, where rank 1 is the rightmost rank with the highest
compression ratio and rank 10 is the leftmost rank with the lowest compression ratio.
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choose mp and ms such that mp ≤ ms. Note that the smallest period lengths perform worse than
the larger period lengths for rank 1. However, from rank 2 on, the smaller period lengths perform
similar or better than the larger period lengths and thus should be preferred.

Figure 4.4: Different multiples of the natural period. The first ten ranks for each period length
are again marked using a ”+” sign.

We already assumed that the natural period should perform best. In Figure 4.4, it can seen
that not only the natural period performs exceptionally well, but also multiples of the natural
period. Even periods that are larger than the square root of the number of data points perform
well if they are multiples of the natural period, at least for small ranks. It is also important to
note that not only multiples of the natural period perform exceptionally well, but also multiples
of the natural period plus half the natural period, but only for ranks higher than 1. They only
become good for rank 2 and higher because their period needs to fit two different cases, where the
first case is a period that starts with a full day and ends with a half day, and the second case is a
period that starts with a half day and ends with a full day.

This phenomenon is shown in Figure 4.5. Looking at rank 1, we can see that the daily structure
is gone, because the period is not a multiple of the natural period. The period-matrix looks like
it tries to capture the structure of the two overlapping 1.5-day periods. The approximation
compared to the real data shows that it is not able to capture much and it almost looks like a
constant representing the average temperature of the 1.5 days, which is encoded into the scaling-
matrix. However, in rank 2, the period-matrix can correct the structure of the two overlapping
1.5-day periods quite well by having the structure almost centered around the origin and thus
being able to flip it around by using negative scaling factors for every second period. Comparing
the approximations of rank 2 and rank 3 shows another problem of the longer period. The second
period, in between samples 216 and 432, starts with a half-day and ends with a full day. The third
rank now adjusts this full day by stretching it vertically to fit the real day much better, but at the
same time, it compresses the prepended half-day, which seems to make this half-day worse than
it was in the rank 2 approximation.

We conclude that the best period length is the natural period or a small multiple of it. If this
does not work, we can try a multiple of half the natural period, but we should be aware that this
will only work well for ranks higher than 1. In general, if we do not have a natural period, we
should try to find a period that is smaller than the number of scaling factors, which means smaller
than the square root of the number of data points.
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Figure 4.5: Kronecker decomposition for the first 4.5 days of our temperature dataset decomposed
with a period of 1.5 days. The same days decomposed with a single day period is shown in
Figure 4.6.
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4.4 Negative Values and Amplitude Scaling

Figure 4.6: Kronecker decomposition of the first five days of the temperature data in Kloten ZH.
The data is in winter, so the temperature is mostly below 0°C.

We have shown how the Kronecker decomposition encodes the data by showing a window of
the last five days, which are in summer, in Figure 3.5. We already mentioned, that there might
be a problem if the data has negative values. The Kronecker decomposition for the first five days,
which are in winter and have mostly temperatures below 0°C, is shown in Figure 4.6. We can
see that the Kronecker decomposition is not able to maintain the structure of the daily period in
the first rank. The reason is, that to achieve negative values, we need to have negative scaling
factors. A negative scaling factor comes with the side effect, that the period is inverted because
every value of the period is multiplied by a negative number. This is why the peaks in the original
data, are valleys in the rank-1 approximation and vice versa.

Looking at rank 2 we can see that this rank stretches the period with high positive scaling
factors. This is how the second rank can compensate for the inverted period of the first rank and
force the period back in the right direction. We can also see that the second rank does almost
nothing on the 4th day because it does not follow the typical pattern of the other days. This is
why the second rank has a very low scaling factor for the 4th day.

In general, these five winter days have a very different structure than the summer days. Not
only do they introduce negative values, but they also have a much smaller range of values. We
will first address the problem of negative values, and then look at what the smaller value range
means for the Kronecker decomposition.

Negative Values To avoid the inverted period, we need to get rid of the negative values.
This can be done by shifting the data into the positive domain. This shift must be reversed to
reconstruct or query the data. How this shift can be recovered while querying the data is discussed
in Section 5.3.6.

Consider the Kronecker decomposition of the first five days of the temperature data in Kloten
ZH, after shifting it into the positive domain, as shown in Figure 4.7. The shifting is done by
subtracting the minimum value of the data, which is negative, from all values. We can see that
the Kronecker decomposition is now able to maintain the structure of the daily period in the first
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Figure 4.7: Kronecker decomposition of the first five days of the temperature data in Kloten ZH
after shifting it into the positive domain.

rank, which should improve the accuracy of the approximation. However, we can also see that
for the first day, we still do not have a very good approximation. This is because the first day
has a very narrow range of values, which cannot be represented well by the first rank. In order
to compress the period the scaling factor needs to be much smaller. This would also make the
average temperature of the first day much lower than it is, which is why the scaling factor is not
that small. We will look further into this in the next paragraph. The most important aspect is the
effect of the shift on the error of the approximation. To see the difference between the shifted and
the unshifted Kronecker decomposition, we plotted the RMSE over the compression ratio curve
for both in Figure 4.8.

The error of the shifted Kronecker decomposition is not much smaller than the error of the
unshifted Kronecker decomposition. The main reason for this mediocre improvement is what was
discussed before. The much larger amplitude for days that have a small range hurts the accuracy
of the approximation. This effect diminishes the improvement we get from the shift. Overall the
whole dataset we gained about 3.0% in error for the first rank, where we had an error of 2.061°C
for the original dataset and dropped it to 1.997°C for the shifted dataset. For the second rank, we
only get a 0.6% smaller error, and for the third rank, we even have an error that is 1.0% larger. All
of the other ranks have an error that is not significantly different from the error of the unshifted
Kronecker decomposition. It is important to note that this effect is highly dependent on the data.

Period amplitude scaling In this paragraph, we discuss the effect that almost mitigated the
improvement we got from shifting the data into the positive domain, which is the scaling of the
period amplitude. It is obvious that scaling (or multiplying) a periodic function like a sine or
cosine with a constant will change the amplitude of the function. This is exactly what happens
with our period. But in our case, the scaling is primarily used to shift the period up and down to
fit it to the average of the period in the data.

These two effects cannot be separated, but we can adjust the magnitude of the amplitude
scaling by shifting the data closer to the origin, to make it more prominent, or further away from
the origin, to make it less prominent. By shifting the data away from the origin, we decrease
the relative difference between the data points while keeping the absolute difference. This can
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Figure 4.8: Comparing the error of the Kronecker decomposition with and without shifting the
data into the positive domain. The error is calculated as the mean squared error between the
original data and the approximation. The ranks one to ten are marked with an x.

mitigate the effect of the amplitude scaling if we shift the data far enough away from the origin.
Our first intuition to handle the negative values for the temperature data was to switch to

Kelvin, which would make all values positive. The problem was that all the values would be
relatively large, between 250K and 320K, which resulted in a worse compression than the original
data, because of this effect. Warm days have a much larger amplitude than cold days, but by
shifting the data away from the origin, we force the amplitude to be the very similar for all days.

In the other direction, we cannot shift the data closer to the origin than the minimum value
of the data, because we would get negative values again. In some cases, this might be a good
idea, even if the period gets inverted because the effect of the period amplitude might dominate
the effect of the flipped period. This can be seen in our temperature example, where for a rank 3
approximation, this is the case. We can see this effect if we look at the summer days in Figure 4.9
and compare it to the summer days in the original dataset in Figure 3.5.

Figure 4.9: Kronecker decomposition of the last five days of the temperature data in Kloten ZH
after shifting it into the positive domain.

The rank 1 approximation of these summer days is much worse than the approximation before
the shift because the period amplitude is not large enough. And it is not large enough, because
the low-temperature measurements that need a small amplitude are now much further away from
the origin and therefore are more influenced by the scaling. That means that overall the period
amplitude is smaller to balance the too-large amplitude for the winter days and the too-small
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amplitude for the summer days.
Considering this tradeoff, we can see that the shift into the positive domain is not always a

good idea. That a rank 3 approximation can be better in the original domain, even though ranks
1 and 2 are worse, as seen in the previous paragraph, suggests that it might be easier for higher
ranks to compensate for the inverted period, than to compensate for the too large or too small
period amplitude. We can try to find a sweet spot for the shift, where the number of negative
values is minimized, but we still keep the periods with a small amplitude close to the origin. In
our case, we tested it by shifting the data by the 0.5th percentile of the data, which is -8.1°C
compared to the minimum of -20.2°C and got marginal but not significant improvements, which
is also shown in Figure 4.8.

4.5 Individual vs. Collective Column Decomposition

In this section, we will discuss how to decompose multiple time series together. In the Sections 3,
4.3 and 4.4 we only looked at decomposing a single time series. In general, the decomposition can
be done over multiple time series, which results in a data-relation with multiple value columns, as
seen conceptually in Section 4.1.

4.5.1 Individual Column Decomposition

The simplest way to decompose multiple columns is to decompose each column individually. The
Kronecker decomposition is applied to each column separately, which means that each column has
a data-matrix and therefore also a scaling-matrix and period-matrix, which are all single-column
matrices. The scaling- and period-matrices are then concatenated to form the overall scaling-
and period-matrices respectively. To express this case, ⊛ is used as the column-wise Kronecker
product to get

D =


s11p1 s12p2 . . . s1nd

pnd

s21p1 s22p2 . . . s2nd
pnd

...
...

. . .
...

sms1p1 sms2p2 . . . smsnd
pnd



=


s11 s12 . . . s1nd

s21 s22 . . . s2nd

...
...

. . .
...

sms1 sms2 . . . smsnd

⊛


p11 p12 . . . p1nd

p21 p22 . . . p2nd

...
...

. . .
...

pmp1 pmp2 . . . pmpnd

 = S ⊛ P,

where nd = ns = np and pi is the i-th column of the period-matrix.
The column mapping of the KroneRelations can therefore be simplified from (4.2) to

dj is decomposed into sjs and pjp iff j = js = jp (4.3)

if the column-wise Kronecker product, i.e. the individual column decomposition, is used.

4.5.2 Collective Column Decomposition

A collective column decomposition means that the data-matrix is decomposed as a whole using
the Kronecker decomposition. Thus,

34



D =


s11P s12P . . . s1ns

P

s21P s22P . . . s2ns
P

...
...

. . .
...

sms1P sms2P . . . smsns
P



=


s11 s12 . . . s1ns

s21 s22 . . . s2ns

...
...

. . .
...

sms1 sms2 . . . smsns

⊗


p11 p12 . . . p1np

p21 p22 . . . p2np

...
...

. . .
...

pmp1 pmp2 . . . pmpnp

 = S ⊗ P,

where ns · np = nd, which is the usual Kronecker decomposition as described in Section 2.1.
In this section, we are looking at an example of multiple time series that share the same range

of values. We will look at the MeteoSwiss temperature data from other cities in Switzerland and
decompose them together with the temperature data from Kloten ZH, which we already saw in
the previous sections. For this collective decomposition, we have multiple options on what part of
the data we want to decompose together. As discussed in Section 2.1, we can choose the width of
the scaling- and period-matrix. The extreme cases are if either of the two decomposed matrices is
a single column. In other words, if the time series share the same scaling or the same period. Note
that the choice between these two extremes is the same as the choice between shared scaling and
shared period in the collective key decomposition in Section 4.2.2, and the results are therefore
comparable.

Shared Period The first option is to decompose the columns such that they all share the
same period, but each series has its scaling factors. To achieve this, we want to use a Kronecker
decomposition where the scaling-matrix has a column for each series. The period-matrix has one
single column that describes the shared period. Thus,

D =


s11P s12P . . . s1nsP

s21P s22P . . . s2ns
P

...
...

. . .
...

sms1P sms2P . . . smsns
P

 =


s11 s12 . . . s1ns

s21 s22 . . . s2ns

...
...

. . .
...

sms1 sms2 . . . smsns

⊗


p11

p21
...

pmp1

 = S ⊗ P ,

where the scaling-matrix S ∈ Rms×nd has one column for each series (ns = nd) and the period-
matrix P ∈ Rmp×1 has a single column (np = 1).

Because the data we want to decompose together is the temperature data from different cities
in Switzerland, it should be reasonable to assume that the temperature in all cities follows a similar
pattern over a day. Therefore, we expect that sharing the period should enable us to compress the
data better than if we decompose each series individually. The resulting RMSE vs. compression
ratio curve is shown in Figure 4.10.

To be able to compare the collective and the individual compression and to make it comparable
to our previous results, we calculated the reconstruction error only for the temperature data of
Kloten ZH, while the other cities were only used for the decomposition. The compression ratio is
calculated for the entire data set, including the data from the other cities.

As we can see, sharing the period does not seem to improve the compression, at least if we
use the natural period of 1 day. This is because the period is very small compared to the scaling,
which means that sharing the period does not significantly increase our compression, while it does
increase the error. However, if we use 5 days, which is significantly longer, we can see that sharing
the period does improve the compression. This suggests that sharing the period can improve the
compression, but only if the period is large enough. Figure 4.11 shows the first two ranks of this
decomposition.
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Figure 4.10: The approximation error for the temperature in Kloten ZH, when it is decomposed
with the temperatures of other cities in Switzerland, sharing the period vs. sharing the scaling.
The comparison is done for the natural period of 1 day in the left plot and 5 days in the right
plot. The first ten ranks are marked with a plus sign.

Figure 4.11: The first two ranks of the Kronecker decomposition with a shared period for four
different locations in Switzerland. The locations are Kloten (KLO), Basel (BAS), Bern (BER)
and Geneva (GVE).
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Shared Scaling Sharing the scaling works similarly to sharing the period, but instead of having
a single column in the period-matrix, we have a single column in the scaling-matrix. Thus,

D =


s11P

s21P
...

sms1P

 =


s11

s21
...

sms1

⊗


p11 p12 . . . p1np

p21 p22 . . . p2np

...
...

. . .
...

pmp1 pmp2 . . . pmpnp

 = S ⊗ P ,

where the scaling-matrix S ∈ Rms×1 has a single column (ns = 1) and the period-matrix P ∈
Rmp×nd has one column for each series (np = nd).

In this case, we expect the different temperature curves to have their daily pattern, but that
they behave similarly relative to each other. This could mean that if it is usually warmer in
Geneva than in Zürich, this should be encoded in the different periods for the two cities, where
we expect the average value of the period for Geneva to be larger than the average value of the
period for Zürich. Note that they still share the same scaling, which means that we expect that
if it is a warm day in Geneva, it is also a warm day in Zürich. The results for this decomposition
are also shown in Figure 4.10.

Other than for the shared period, we can see that sharing the scaling does improve the com-
pression significantly for the natural period of 1 day. This is because the scaling is much larger
than the period, which means that sharing the scaling can significantly reduce the size of the
compression. In Figure 4.12 we can see that we were right in our assumption that the periods are
very similar, but some cities are usually warmer than others.

Figure 4.12: The first two ranks of the Kronecker decomposition with a shared scaling for four
different locations in Switzerland. The locations are Kloten (KLO), Basel (BAS), Bern (BER)
and Geneva (GVE).

Heterogeneous Data and Normalization

In this section, we want to decompose multiple time series with different value ranges. We will
again look at meteorological data from MeteoSwiss but this time the location is fixed to Kloten
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ZH and different measurements are taken at the same location. The measurements for Kloten ZH
that we want to decompose together are shown in Table 4.1.

Measurement Unit

Temperature 2m above ground ◦C

Dew Point 2m above ground ◦C

Gust Peak 10min max m/s

Humidity 2m above ground %

Precipitation mm

Pressure at station level hPa

Global Radiation W/m2

The temperature at 5cm above grass ◦C

Wind Speed 10min mean m/s

Table 4.1: The measurements that we want to decompose together. Data Source: MeteoSwiss
[Met]

If we just decompose all of these measurements together, we will get a better approximation
error for a given compression ratio for some of the measurements and a worse approximation error
for others, compared to decomposing each measurement individually. The reason for this is that
the measurements have very different value ranges. As described in Section 2.1, the Kronecker
decomposition minimizes the Frobenius norm of the approximation error. If we have a column,
that has very large absolute values compared to the other columns, the approximation error for
this column will have a much larger impact on the Frobenius norm than the other measurements.
This measurement will dominate the decomposition and will be approximated very well, while
other measurements with comparably small values will be approximated worse.

To mitigate this problem, we need to normalize the data before decomposing it. The easiest way
to normalize the data is to divide each measurement by its maximum absolute value, this way all
measurements will have values in the range [−1, 1]. Of course, we can also use other normalization
techniques, but we always have to be careful if we introduce a shift in the data, because as
described in Section 4.4 this will change the Kronecker decomposition of each measurement. It is
also much easier to recover the original data if we only use a scaling factor. To avoid confusion
with the scaling factors in the scaling-matrix, we will call this scaling factor the normalization
factor: cnormal. Taking the normalization factor for each measurement results in a row vector
cnormal ∈ Rnd . The length of this vector, nd, is the number of measurements which is the number
of columns in the data-matrix.

If we use a shared scaling for all measurements, each of the measurements will have a separate
period-column in the period-matrix, which can directly be multiplied with the normalization factor
after the decomposition. Thus,

D ∗ cnormal =


d11c1, d12c2, . . . , d1nd

cnd

d21c1, d22c2, . . . , d2nd
cnd

...
...

. . .
...

dmd1c1, dmd2c2, . . . , dmdnd
cnd

 =


s11P ∗ cnormal

s21P ∗ cnormal

...

sms1P ∗ cnormal

 = S ⊗ (P ∗ cnormal)

where the ∗ operator is in this case the column-wise multiplication of a matrix M and the row
vector v. The same can be done for the scaling-matrix if we use a collective decomposition with
a shared period.

If we use a normalization technique that involves shifting the data, for example, min-max-
normalization or standardization, we cannot revert the normalization directly in the decomposed
form. We will have to revert the shift while querying the data, which is the same problem that
we have when we shift the data in Section 4.4. We will discuss how to do this in Section 5.3.6.
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Figure 4.13: The collective decomposition of the measurements from Table 4.1. The measure-
ments are normalized by dividing each measurement by its maximum absolute value. The error
is calculated as the RMSE of the approximation of the temperature 2m above ground, to keep it
comparable to the results in the previous sections. The plots for the individual decompositions
are completely overlapping, because the Kronecker decomposition is scale invariant.

How well the collective decomposition works depends on how similar the patterns of the mea-
surements are. In our case, we can see the results in Figure 4.13. The normalization has a
significant effect on the approximation error. Only the normalized matrix with shared scaling
has a better approximation error using the collective decomposition. The periods of the different
measurements are too different to be approximated well by a shared period.

4.6 Further Experiments

In this section, we will show that the observations made in the previous sections generalize to other
time series than the temperature in Kloten. For this purpose, we will use more measurements and
locations from the MeteoSwiss dataset as well as a traffic dataset called UTD19 [UTD], which
contains vehicle counts for many cities in the world.

We conclude that the observations made in the previous sections generalize to other time series.
It is therefore possible to use the Kronecker decomposition to compress a wide range of time series
but each time series must be analyzed individually because the optimal decomposition depends
on the data.

In Section 4.6.1, we will look at the temperature in different cities in Switzerland. In Section
4.6.2, we will look at different measurements in Kloten. In Section 4.6.3, we will look at the traffic
in Luzern.

4.6.1 MeteoSwiss: Temperatures in Switzerland

In the previous sections, we only looked at the approximation error for the temperature in Kloten.
Figure 4.14, shows how the results generalize to other cities in Switzerland. The different temper-
ature time series were normalized by dividing by the maximum temperature in the time series, as
discussed in Section 4.5.2. We can see that the results for the other cities are similar to the results
for Kloten.

In the first row, the period length is set to the natural period of 1 day. Sharing the period
does not have a significant impact on the compression ratio but the periods are similar enough
such that the error over the compression curve is almost identical to the individual decomposition.
Only sharing of the scaling-column has a significant impact on the compression ratio and flattens
the curve for high compression ratios. Compared to the averaging baseline, the compression is
significantly better for all three approaches.

Using a period length of 5 days, the compression increase for the shared period compared to
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Figure 4.14: Plotted are the root mean square approximation errors (RMSEs) of the temperature
in different cities in Switzerland. The top row is decomposed with a period length of 1 day and
the bottom row with a period length of 5 days.

the individual decomposition becomes significant and therefore big enough to give an advantage
for high compression ratios. This was expected from the results in Figure 4.10.

4.6.2 MeteoSwiss: Weather in Kloten

Figure 4.15, shows the approximation error for the different measurements in Kloten, as listed in
Table 4.1. The different measurements were again normalized by dividing by the maximum value.
The error is normalized as well to make it easier to compare the different measurements.

The results are again comparable to the result for the temperature in Kloten in Figure 4.13.
Sharing the period is not a good idea in this case, because the periods are not similar enough and
the decompression becomes generally worse and less consistent. Sharing the scaling-column seems
to work especially well for the two temperature measurements, but not for the others, and should
therefore be used with caution. It is more consistent than sharing the period and should be used
especially if high compression ratios are desired.

4.6.3 UTD19: Traffic in Luzern

The UTD19 dataset contains traffic data for many cities in the world [UTD]. We chose the city
of Luzern in Switzerland for our experiments, because there we have access to continuous data
over one year for multiple locations in the city. The sensors in Luzern measure the number of cars
passing by in a three-minute interval. This gives us a natural period of 480 three-minute intervals
in one day because we expect the traffic to be periodic over a day. As for the MeteoSwiss dataset,
the UTD19 dataset was prepared by interpolating any missing values using linear interpolation.
Other than that, the data was not modified.

The first row in Figure 4.16, shows therefore the approximation error over the compression
ratio for a period length of 1 day. The big difference to the MeteoSwiss dataset is that the natural
period is larger than the square root of the number of datapoint, i.e. the period-columns are larger
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Figure 4.15: Plotted are the normalized root mean square approximation errors (RMSEs) of
different measurements in Kloten. The top row is decomposed with a period length of 1 day and
the bottom row with a period length of 5 days.

Figure 4.16: Plotted are the root mean square approximation errors (RMSEs) of the traffic in
Luzern. The top row is decomposed with a period length of 1 day and the bottom row with a
period length of 0.5 days. Data Source: UTD19 [UTD]
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than the scaling-columns (480 vs. 365), which should generally be avoided. However, the periodic
behavior of the traffic is strong enough such that the Kronecker decomposition is still significantly
better than the averaging baseline. Both methods of collective decomposition bring an additional
improvement over individual decomposition.

To get a smaller period, the second row in Figure 4.16 shows the approximation error for a
period length of 0.5 days. The approximation becomes significantly worse because the period is
no longer a multiple of the natural period, except for the decomposition with a shared scaling-
column, where the advantage in compression ratio is large enough to compensate for the worse
approximation.
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Chapter 5

Query Processing in KroneDB

One of the main advantages of Kronecker decomposition is that we can compute a large number
of relational queries directly on the decomposed data. Such queries may have operators such as
selection, projection, join, and aggregates. In this chapter, we will discuss how different queries
can be evaluated on the decomposed relations.

In Section 5.1 and Section 5.2, the selection and projection operators are discussed. In Sec-
tion 5.3, we will look at the most common aggregates: sum, count, average, min, max and product.
A special focus will be on the sum product, which is a generalization of the sum and is used in
many data analysis and machine learning applications [Olt20]. In Section 5.4, it is shown how
the KroneRelations fit into larger queries where they are joined with other relations. Finally, in
Section 5.5, the efficiency of the different queries is tested on the MeteoSwiss dataset.

We conclude that the selection and projection operators can be run in one pass over the
decomposed data with a performance decrease compared to the uncompressed data. For the
aggregates, we show that it is not only possible but also more efficient to run them directly on
the decomposed data. It is shown that the KroneRelations in a larger context can simply be
substituted by the decomposed relations without any modifications to the query and other query
optimizations can be applied as usual. The experiments confirm the theoretical results about the
performance of the different queries.

5.1 Selection

In this section, we will discuss how selection queries can be executed directly on the decomposed
data. For this purpose, we want to make a distinction between selection on the key columns,
selection on the index column, and selection on the value columns. We will show how we can map
a selection query on the original data to a selection query on the decomposed data.

For simplicity, we will only use a single key and a single value column in the SQL queries.
The rank is assumed to be 1 and the rank column is omitted. The generalization to multiple
key columns can be done by simply adding the additional key columns to the selection and join
conditions. Generalizing to multiple value columns and ranks is also straightforward but requires
a bit more notation which will be introduced in Section 5.3.1. We further assume that all key
decompositions have the same period length mp.

Selection on the key columns The selection of keys is the easiest case because we can simply
select the rows that have the requested value as their key attribute. We generally assume that the
key columns are categorical, therefore we only consider equality as a selection condition. A naive
approach would be to join the decomposed relations and then select the rows with the requested
key value on the join result. However, this is not the most efficient way, because we can select
directly on the decomposed relations and avoid having keys in the join result which are not needed.

43



This simple optimization is usually done by the query optimizer but we will do it manually for
the sake of clarity. Expressed in SQL, selecting all tuples with the key value ”a”, looks like this:

SELECT s.x, s.rid_s * {m_p} + p.rid_p AS rid , s.s * p.p AS d

FROM (

SELECT *

FROM scaling

WHERE x = "a"

) AS s

JOIN (

SELECT *

FROM period

WHERE x = "a"

) AS p

ON s.x = p.x;

where {m_p} is the period length. The rid attribute is calculated according to (4.1).

Selection on the index column The index column is not categorical, so we can use equality
and inequality selection.

For inequality selection, it is not generally possible to optimize the naive approach of joining
the decomposed relations and then selecting on the join result. Therefore, the SQL query to select
all tuples with an rid smaller than 5 looks like this:

SELECT s.x, s.rid_s * {m_p} + p.rid_p AS rid , s.s * p.p AS d

FROM scaling s

JOIN period p

ON s.x = p.x

WHERE s.rid_s * {m_p} + p.rid_p < 5;

In the case of an equality selection, we can again optimize the query. By using the rid

calculation form (4.1), we know that

rids =

⌊
rid− 1

mp

⌋
+ 1 and ridp = (rid− 1)%mp + 1,

where % is the modulo operator which returns the remainder of the division.
Assume that the period length mp = 2 and we want to select the row with rid = 5. Then we

know that rids = 3 and ridp = 1 and we can write the query as

SELECT s.x, s.rid_s * {m_p} + p.rid_p AS rid , s.s * p.p AS d

FROM (

SELECT *

FROM scaling

WHERE rid_s = 3

) AS s

JOIN (

SELECT *

FROM period

WHERE rid_p = 1

) AS p

ON s.x = p.x;

This optimization cannot be done by the query optimizer because it requires knowledge about
the Kronecker decomposition.
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Selection on the value columns To select on the value columns, we have no choice but to
join the decomposed relations and then select on the reconstructed value columns. An SQL query
that selects all tuples with a d-value greater than 5 would be

SELECT s.x, s.rid_s * {m_p} + p.rid_p AS rid , s.s * p.p AS d

FROM scaling s

JOIN period p

ON s.x = p.x

WHERE s.s * p.p > 5;

5.2 Projection

In this section, we discuss how we can do a projection on the decomposed relations. This is a
very simple operation, as we can simply project the columns of the decomposed relations that
correspond to the columns in the data-relation that we want to project on. As we did in the
previous section, we will show how to do a projection on key, index, and value columns separately.
Also here, we will assume that the rank is 1 and the rank column is omitted.

Projection on the Key Columns Projecting on key columns is straightforward, as we can
directly project on the key columns of the decomposed relations. Consider a KroneRelations with
the key columns x1, . . . , xn, where n ≥ 2. Then, the SQL query to project on the key columns x1
and x2 is written as

SELECT s.x_1 , s.x_2

FROM (

SELECT x_1 , x_2

FROM scaling

) AS s

JOIN (

SELECT x_1 , x_2

FROM period

) AS p

ON s.x_1 = p.x_1 AND s.x_2 = p.x_2;

If the goal is to get all unique combinations of the key values, then we can simply project on
the key columns of the scaling- or period-relation, because both contain all unique combinations
of the key values. Therefore,

SELECT DISTINCT x_1 , x_2

FROM data;

is equivalent to

SELECT DISTINCT x_1 , x_2

FROM scaling;

and

SELECT DISTINCT x_1 , x_2

FROM period;

Projection on the Index Column Assume that we have a single key column x and a period
length mp. Projecting on the index column requires a join on the key columns to avoid a cross-
product across different keys. Therefore is the only choice to join the decomposed relations on the
key column and then project on the index column as follows:

45



SELECT s.rid_s * {m_p} + p.rid_p AS rid

FROM (

SELECT x, rid_s

FROM scaling

) AS s

JOIN (

SELECT x, rid_p

FROM period

) AS p

ON s.x = p.x;

Projection on the Value Columns Projecting on value columns is done analogously to the
projection on the index column. Consider a KroneRelation with the value columns d1, . . . , dn,
which are decomposed into the scaling columns s1, . . . , sn and the period columns p1, . . . , pn,
using the individual column decomposition. Then, the SQL query to project on the value columns
d1 and d2 can be written as

SELECT s_1 * p_1 AS d_1 , s_2 * p_2 AS d_2

FROM (

SELECT x, s_1 , s_2

FROM scaling

) AS s

JOIN (

SELECT x, p_1 , p_2

FROM period

) AS p

ON s.x = p.x;

where {s_i} and {p_j} are the decomposed value columns that correspond to the data-column
d_f.

5.3 Aggregates

In this section, we will look at the five most common aggregates: sum, count, average, min, and
max. The focus will be on the sum aggregate over the product of multiplied columns, which is
called sum product, in Section 5.3.5. In Section 5.3.7, we will look at the runtime complexity of
the aggregates over the decomposed data. Finally, in Section 5.3.8, we will briefly discuss more
complex aggregations, which are combinations of the discussed aggregates.

To keep track of the columns in the decomposed matrices, we introduce a special notation
for the columns. The columns in S and P are indexed by the column index, i.e. s1, . . . , sns

and p1, . . . ,pnp . The columns in the data-matrix D are indexed by the column indices of the
corresponding columns in the scaling and period matrices, i.e.

du,v = su ⊗ pv, for all u ∈ [ns], v ∈ [np], (5.1)

where ns is the number of columns in the scaling-matrix and np is the number of columns in
the period-matrix. This notation makes it easier to keep track of the columns in the decomposed
matrices and provides a general mapping independent of the column decomposition strategy unlike
the mappings in (4.2) and (4.3) which are specifically for the collective and individual column
decomposition, respectively.
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Thus, for the collective column decomposition, the columns are indexed as follows:

S ⊗ P =

 s11 s12

s21 s22

s31 s32


s1 s2

⊗

[
p11 p12

p21 p22

]
p1 p2

=



s11p11 s11p12 s12p11 s12p12

s11p21 s11p22 s12p21 s12p22

s21p11 s21p12 s22p11 s22p12

s21p21 s21p22 s22p21 s22p22

s31p11 s31p12 s32p11 s32p12

s31p21 s31p22 s32p21 s32p22


d1,1 d1,2 d2,1 d2,2

= D.

For the individual column decomposition, the columns are indexed accordingly as

S ⊛ P =

 s11 s12
...

...


s1 s2

⊛

 p11 p12
...

...


p1 p2

=

 s11p11 s12p12
...

...


d1,1 d2,2

= D,

where ⊛ is the column-wise Kronecker product.

5.3.1 Sum

Consider the example above, summing up the first column, d1,1, of the data-matrix D gives us
the following equation:∑

d∈d1,1

d = s11p11 + s11p21 + s21p11 + s21p21 + s31p11 + s31p21,

where
∑

d∈d1,1
d is the sum of all elements in the column vector d1,1. We can rearrange the

equation to get ∑
d∈d1,1

d = (s11 + s21 + s31)(p11 + p21),

which is the same as the sum of the first column, s1 of the scaling matrix S, times the sum of the
first column, p1 of the period-matrix P :∑

d∈d1,1

d =
∑
s∈s1

s ·
∑
p∈p1

p.

In general, we can say that the sum over a column in D can be expressed as the product of
the individual sums over the corresponding columns in S and P :∑

d∈du,v

d =
∑
s∈su

s ·
∑
p∈pv

p. (5.2)

This seems to be a very simple and efficient way to calculate the sum of a column in the original
data-matrix, but we have not considered higher-rank decompositions yet. We define Dk as the
rank-k approximation of the data-matrix D. Further are Dr, Sr, and P r defined such that

Dk =

k∑
r=1

Dr =

k∑
r=1

Sr ⊗ P r

and

dk|u,v =

k∑
r=1

dr
u,v =

k∑
r=1

sru ⊗ pr
v,
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where dk|u,v is the k-rank approximation of the column vector du,v. To avoid too many subscripts,
we will avoid using the subscript k for the k-rank approximation as it is usually clear from the
context.

The calculation of the sum over d1,1 for rank k is therfore given by the equation∑
d∈d1,1

d = (s111 + s121 + s131)(p
1
11 + p121) + · · ·+ (sk11 + sk21 + sk31)(p

k
11 + pk21),

which can be rewritten as ∑
d∈d1,1

d =

k∑
r=1

∑
s∈sr1

s ·
∑
p∈pr

1

p

 .

In general, we can say that the sum over a column in the data-matrix can be expressed as the
product of the individual sums over the corresponding columns in the scaling and period matrices,
summed over all ranks:

∑
d∈du,v

d =

k∑
r=1

∑
s∈sru

s ·
∑
p∈pr

v

p

 . (5.3)

Summing over the column d1,1 of the data-relation D for each key x can be expressed as the
following SQL query:

SELECT x, SUM(d_11)

FROM data

GROUP BY x;

Using the result in (5.3) we can rewrite this query to aggregate over the decomposed relations
S and P as follows:

SELECT x, SUM(s.sum_s * p.sum_p)

FROM (

SELECT x, r, SUM(s_1) AS sum_s

FROM scaling

GROUP BY x, r

) AS s

JOIN (

SELECT x, r, SUM(p_1) AS sum_p

FROM period

GROUP BY x, r

) AS p

ON s.x = p.x AND s.r = p.r

GROUP BY x;

where we sum over the columns s1 and p1 first and then take the product of the sums (s.sum_s
* p.sum_p), before summing over all ranks to get the final sum for each key x.

5.3.2 Count

The count of a column in the original data-matrix is just the number of rows of the matrix. In
our example, we have the data-matrix D ∈ Rmd×nd , where md = 6 and nd = 4. The count over
any column in the data-matrix is md = 6, which is equal to ms ·mp = 3 · 2 = 6 by definition. This
holds for every rank k. Thus, the count over any column in the data-matrix is rank-independent.

The SQL query for the count for every key in D is

SELECT x, COUNT (*)

FROM data

GROUP BY x;
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To calculate the count over the decomposed relations S and P, we need to fix the rank because
as mentioned above, the count is rank-independent. The SQL query for the count for every key
over the decomposed relations S and P is therefore

SELECT x, count_s * count_p

FROM (

SELECT x, COUNT (*) AS count_s

FROM scaling

WHERE r = 1

GROUP BY x

) AS s

JOIN (

SELECT x, COUNT (*) AS count_p

FROM period

WHERE r = 1

GROUP BY x

) AS p

ON s.x = p.x;

where the rank is fixed to 1.

5.3.3 Average

The average is just the sum divided by the count. Therefore, the calculation of the average over
any column vector du,v in the data-matrix D is given by

∑
d∈du,v

d

md
=

∑k
r=1

(∑
s∈sru

s ·
∑

p∈pr
v
p
)

ms ·mp
=

k∑
r=1

∑
s∈sru

s

ms
·
∑

p∈pr
v
p

mp
. (5.4)

This rewriting shows that the average of the data column du,v can be calculated by first calculating
the average of sru and pr

v and then multiplying the two averages before summing over all ranks.
We can express the average over the data-relation D in SQL as

SELECT x, AVG(d_11)

FROM data

GROUP BY x;

This query can be rewritten to use the decomposition using the rewriting from (5.4) to get

SELECT x, SUM(avg_s * avg_p)

FROM (

SELECT x, r, AVG(s_1) AS avg_s

FROM scaling

GROUP BY x, r

)

JOIN (

SELECT x, r, AVG(p_1) AS avg_p

FROM period

GROUP BY x, r

)

ON s.x = p.x AND s.r = p.r

GROUP BY x;
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5.3.4 Min, Max

Consider again our example from Section 5.3. The goal is to find the minimum of the first
data column d1,1. Recall that the first column is the result of the following Kronecker product:
d1,1 = s1 ⊗ p1. Thus, the minimum is calculated by

min(d1,1) = min(s11p11, s11p21, s21p11, s21p21, s31p11, s31p21). (5.5)

By definition of the Kronecker product, every element of s1 is multiplied with every element of p1

to form d1,1. In case there are no negative values in s1 or p1 the minimum of d1,1 is the minimum
of s1 multiplied with the minimum of p1. Because there are negative values by construction of the
Kronecker decomposition, this needs to be handled by including the maximum values of s1 and
p1. Thus,

min(d1,1) = min(min(s1) ·min(p1),min(s1) ·max(p1),max(s1) ·min(p1),max(s1) ·max(p1)),
(5.6)

will capture the cases where s1 or p1 have negative values. The cases min(s1) · max(p1) and
max(s1) ·min(p1) cover that the smallest negative value multiplied by the largest positive value
results in the smallest negative value overall and the last case, max(s1) ·max(p1), covers the case
where both s1 and p1 only have negative values. For the maximum, we can use the same reasoning
to get

max(d1,1) = max(min(s1) ·min(p1),min(s1) ·max(p1),max(s1) ·min(p1),max(s1) ·max(p1)).

The minimum query for the data-relation D is given by

SELECT x, MIN(d_11)

FROM D

GROUP BY x;

For the query over the decomposition, we use the LEAST function which is implemented in most
common database systems to get the following query corresponding to (5.6):

SELECT x, LEAST(

min_s * min_p , min_s * max_p , max_s * min_p , max_s * max_p

)

FROM (

SELECT x, MIN(s_1) AS min_s , MAX(s_1) AS max_s

FROM S

WHERE r = 1

GROUP BY x

) JOIN (

SELECT x, MIN(p_1) AS min_p , MAX(p_1) AS max_p

FROM P

WHERE r = 1

GROUP BY x

);

The maximum query is analogous to the minimum query.

Rank-k The discussion in the previous paragraph only discussed the minimum and maximum
of rank 1. Given rank k = 2, we can write the minimum as

min(d1,1) = min((s111p
1
11 + s211p

2
11), (s

1
11p

1
21 + s211p

2
21), . . . , (s

1
31p

1
21 + s231p

2
21)).

To optimize this query, we need to consider that the second rank might change the position of the
minimum value in d1,1. It is possible to use Fagin’s algorithm or the threshold algorithm [Fag02]

50



to compute the extrema over multiple ranks without reconstruction of the data-matrix. Initial
experiments showed that this approach seems to be slower than simply reconstructing the data-
matrix and then computing the extrema over the reconstruction. We assume that the extrema of
rank 1 are sufficiently good approximations for the extrema of rank k because rank 1 encodes the
most important information of the data-matrix.

5.3.5 Sum Product

This section starts with a generalization of the sum and the dot product, the sum product, which
is the elementwise multiplication of one or more vectors of equal length followed by a sum. This
sum product is used to express in linear algebra what to do when summing over a product of
columns in the data-matrix D.

Consider the data-matrix D as a set of column vectors d1, . . . ,dnd
∈ Rmd . The goal is to take

the sum product over a subset of the data-columns Dl = d1, . . . ,dl ⊆ D.
In SQL, this sum product is expressed as:

SELECT SUM(d_1 * ... * d_l)

FROM D;

where d_1, . . . , d_l are the columns of Dl.
We use the following notation for the sum product in linear algebra:

⟨d1, . . . ,dl⟩ =
md∑
i=1

d1[i] · ... · dj [i],

where d1, . . . ,dl are the column vectors in the sum product, md is the height of the data-matrix
D and therefore the length of the column vectors, and d[i] is the i-th element of the vector d.
This notation is used to describe the sum product in the rest of this thesis.

An Example

Consider again the example introduced in Section 5.3. Calculating the sum product over the first
two columns of the data-matrix D is done as follows:

⟨d1,1,d1,2⟩ = s11p11 · s11p12 + s11p21 · s11p22 + · · ·+ s31p11 · s31p12 + s31p21 · s31p22.

We can rearrange this equation to get

⟨d1,1,d1,2⟩ = (s11 · s11 + s21 · s21 + s31 · s31)(p11 · p12 + p21 · p22),

which is the product of the sum product over the scaling and period-matrices and can therefore
be written as

⟨d1,1,d1,2⟩ = ⟨s1, s2⟩ · ⟨p1,p2⟩.

To get an example for higher ranks, we calculate the sum product over the first two columns
of D for rank 2:

⟨d1,1,d1,2⟩ = (s111p
1
11 + s211p

2
11)(s

1
11p

1
12 + s211p

2
12) + · · ·+ (s131p

1
21 + s231p

2
21)(s

1
31p

1
22 + s231p

2
22).

We can again rearrange this to get

⟨d1,1,d1,2⟩ = (s111s
1
11 + s121s

1
21 + s131s

1
31)(p

1
11p

1
12 + p121p

1
22)

+ (s111s
2
11 + s121s

2
21 + s131s

2
31)(p

1
11p

2
12 + p121p

2
22)

+ (s211s
1
11 + s221s

1
21 + s231s

1
31)(p

2
11p

1
12 + p221p

1
22)

+ (s211s
2
11 + s221s

2
21 + s231s

2
31)(p

2
11p

2
12 + p221p

2
22),
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and use the sum product notation to write this as

⟨d1,1,d1,2⟩ = ⟨s11, s12⟩ · ⟨p1
1,p

1
2⟩

+ ⟨s11, s22⟩ · ⟨p1
1,p

2
2⟩

+ ⟨s21, s12⟩ · ⟨p2
1,p

1
2⟩

+ ⟨s21, s22⟩ · ⟨p2
1,p

2
2⟩.

We will show how to calculate the sum product over the Kronecker decomposition for an
arbitrary number of columns and ranks in the next section.

The Sum Product over the Kronecker decomposition

In this section, we will show how to calculate the sum product over two types of Kronecker
decompositions. The first type is the individual column Decomposition, where all column vectors
are decomposed individually. The second type is the collective column Decomposition, where the
data-matrix D is decomposed as a whole.

Individual Column Decomposition We define the individual column Decomposition of rank 1
for a set of vectors {d1, . . . ,dl} ∈ Rmd as two sets of vectors {s1, . . . , sl} ∈ Rms , {p1, . . . ,pl} ∈ Rmp

such that

di = si ⊗ pi for all i ∈ [l]. (5.7)

By definition of the Kronecker Product, it holds that md = ms ·mp.
The sum product over the individual column Decomposition of rank 1 is given by the equation

⟨d1, . . . ,dl⟩ =
md∑
i=1

d1[i] · ... · dl[i] definition of the sum product

=

ms∑
j=1

mp∑
k=1

s1[j] · p1[k] · ... · sl[j] · pl[k] definition of the Kronecker Product

=

ms∑
j=1

s1[j] · ... · sl[j] ·
mp∑
k=1

p1[k] · ... · pl[k] distribution of the sum

= ⟨s1, . . . , sl⟩ · ⟨p1, . . . ,pl⟩. definition of the sum product
(5.8)

We can extend this to the individual column Decomposition of rank k for a set of vectors
{d1, . . . ,dl} ∈ Rm

d . We define the individual column Decomposition of rank k as two sets of
vectors {s11, . . . , skl } ∈ Rms , {p1

1, . . . ,p
k
l } ∈ Rmp such that

di =

k∑
r=1

sri ⊗ pr
i for all i ∈ [l].

We further define dr
i = sri ⊗ pr

i for all i ∈ [l], r ∈ [k], such that

di =

k∑
r=1

dr
i for all i ∈ [l]. (5.9)

The sum product over the individual column Decomposition of rank k is therefore given by
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the equation

⟨d1, . . . ,dl⟩ =
md∑
i=1

d1[i] · ... · dl[i] definition of the sum product

=

md∑
i=1

(
k∑

r=1

dr
1[i] · ... ·

k∑
r=1

dr
l [i]

)
definition in (5.9) (5.10)

=

md∑
i=1

∑
(r1,...,rl)∈[k]l

dr1
1 [i] · ... · drl

l [i] distribution of the sum

=
∑

(r1,...,rl)∈[k]l

(
md∑
i=1

dr1
1 [i] · ... · drl

l [i]

)
distribution of the sum

=
∑

(r1,...,rl)∈[k]l

⟨dr1
1 , . . . ,d

rl
l ⟩ definition of the sum product

=
∑

(r1,...,rl)∈[k]l

⟨sr11 , . . . , s
rl
l ⟩ · ⟨p

r1
1 , . . . ,p

rl
l ⟩. from rank 1 (5.8) (5.11)

This means that the sum product over the columns in D can be calculated by first calculating the
sum product over the corresponding columns in S and P and multiplying the results, as we have
seen for rank 1. However, this is done for every possible combination of ranks r1, . . . , rl and then
summed up.

Collective column Decomposition In the previous paragraph, we showed how to calculate
the sum product over the individual column Decomposition. In this paragraph, we will show how
the sum product over the collective column decomposition is calculated in the same way.

The collective column Decomposition of rank 1 for a matrix D ∈ Rmd×nd is defined as two
matrices S ∈ Rms×ns , P ∈ Rms×ns such that

D = S ⊗ P.

By definition of the Kronecker Product, it holds that md = ms ·mp and nd = ns · np. Using
the column notation introduced in Section 5.3, we can write the collective column Decomposition
as

dui,vi = sui
⊗ pvi for all i ∈ [l].

This fits (5.7) and the same computations can be applied to the collective column decomposition
to obtain

⟨du1,v1 , . . . ,dul,vl
⟩ = ⟨su1 , . . . , sul

⟩ · ⟨pv1 , . . . ,pvl
⟩.

Extending this to the collective column Decomposition of rank k for a matrix D ∈ Rmd×nd ,
we define the collective column Decomposition of rank k as two sets of matrices {S1, . . . , Sk} ∈
Rms×ns , {P 1, . . . , P k} ∈ Rmp×np such that

Dk =

k∑
r=1

Sr ⊗ P r.

Again reusing the computation from the individual column decomposition results in

⟨du1,v1 , . . . ,dul,vl⟩ =
∑

(r1,...,rl)∈[k]l

⟨sr1u1
, . . . , srlul

⟩ · ⟨pr1
v1 , . . . ,p

rl
vl
⟩. (5.12)

The corresponding SQL query for the sum product over the Kronecker decomposition can be
generated using Algorithm 1. Figure 11.1 in the appendix shows what such a query looks like for
a sum product over two columns of a rank-2 Kronecker decomposition.
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Algorithm 1 SQL query for the sum product over the Kronecker decomposition

Require: Key column names x, sum product column names s and p, decomposed relation names
S and P, rank k
for (i, (r1, . . . , rl)) ∈ (kl, [k]l) do

Self join S for each column in sl and rank r in (r1, . . . , rl) as Si and select the sum product
over the value columns s(r1,...,rl) grouped by x as s′i

Self join P for each column in pl and rank r in (r1, . . . , rl) as Pi and select the sum product
over the value columns p(r1,...,rl) grouped by x as p′i

Join Si and Pi on x as Di and select the product s′i ∗ p′i as di
end for
Join all Di on x and select the sum over all di as d

5.3.6 Recovering Shift in Aggregates

In the Sections 4.5.2 and 4.4 it was discussed that shifting the original data-matrix D by a constant
value c can improve the approximation quality of the decomposition. In this section, we will discuss
how to recover such a shift when aggregating over the decomposed data.

For the average, minimum, and maximum, recovering the shift is trivial. We can simply
subtract the shift from the result of the aggregation, because

avg(d1 + c) = avg(d1) + c.

The same holds for the minimum and maximum.
In the case of a sum aggregation, the situation is slightly more complicated, because∑

d∈(d1+c)

d =
∑
d∈d1

(d+ c) =

(∑
d∈d1

d

)
+md · c.

This means that we need to subtract the shift multiplied by the number of elements in the column
from the result of the sum.

For the sum product, the situation is even more complicated. We start by looking at the sum
product of the columns d1,1 and d2,2. The sum product of these two columns is given by

⟨d1 + c,d2 + c⟩ =

md∑
i=1

(d1[i] + c) · (d2[i] + c)

=

md∑
i=1

d1[i] · d2[i] + c ·
md∑
i=1

d1[i] + c ·
md∑
i=1

d2[i] +md · c2

=⟨d1,d2⟩+ c · ⟨d1⟩+ c · ⟨d2⟩+ c2 ·md.

For more than two columns we get

⟨d1 + c, . . . ,dl + c⟩ =
⟨d1, . . . ,dl⟩
+ c · ⟨d1, . . . ,dl−1⟩+ c · ⟨d1, . . . ,dl−2,dl⟩+ · · ·+ c · ⟨d2, . . . ,dl⟩
+ c2 · ⟨d1, . . . ,dl−2⟩+ c2 · ⟨d1, . . . ,dl−3,dl−1⟩+ · · ·+ c2 · ⟨d3, . . . ,dl⟩
...

+ cl−1 · ⟨d1⟩+ cl−1 · ⟨d2⟩+ · · ·+ cl−1 · ⟨dl−1⟩
+ cl ·md,

where l is the number of columns. This suggests that it should probably be avoided to shift
the data-matrix D when using the sum product as an aggregate, especially when the number of
columns is large.
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5.3.7 Runtime Complexity Analysis

In this section, we compare the theoretical runtimes of calculating the different aggregates over
the data-matrix D ∈ Rmd×nd and the decomposed matrices S ∈ Rms×ns and P ∈ Rmp×np .

Sum To calculate the sum over any column in D, we need md additions, which gives us a
runtime complexity of O(md). For the decomposed matrices, we need to calculate the sum over
each column in S and P separately and then multiply the results. This leaves us with ms +mp

additions and one multiplication. This is done for each rank, which gives us a runtime complexity
of O(k(ms +mp)), where k is the number of ranks.

Count The count over D is just the number of rows in D, which is md. The runtime complexity
is therefore O(1). For the decomposed matrices, the count is ms ·mp, which also gives us a runtime
complexity of O(1).

For relational databases, where the count is calculated by scanning the table, the runtime
complexity is O(md) for the count over the data-relation D and O(ms+mp) over the decomposed
relations S and P.

Average For the average, which is just the sum divided by the count, we again get O(md) and
O(k(ms +mp)) for the average over the data-matrix D and the decomposed matrices S and P ,
respectively.

MinMax Since we only consider min and max for rank 1, we can calculate the min and max
over the original data-matrix in O(md) time and over the decomposed matrices in O(ms +mp)
time.

Sum Product For the sum product over D, we need (l− 1) ·md multiplications, where l is the
number of columns in the sum product, for the element-wise multiplication of the columns and
then (md − 1) additions, for the sum of the resulting vector. This results in a runtime complexity
of O(l ·md).

For the decomposed matrices, we need to calculate the sum product for each combination in
[k]l separately and then sum up the results. We need (l − 1) · ms multiplications and ms − 1
additions for the sum product over S and (l− 1) ·mp multiplications and mp − 1 additions for the
sum product over P . Overall, this gives us a runtime complexity of O(kl · l · (ms +mp)).

The runtime of the sum product over the decomposed matrices is polynomial in the rank k,
with a degree of l. Thus, if we aim to use the sum product efficiently, especially with a high
number of columns, we should be cautious about selecting high ranks. As discussed in Section 4.3,
if we want a specific accuracy or compression ratio for our approximation, we can choose if we
want to reach it with a more balanced decomposition and a higher rank or with a less balanced
decomposition and a lower rank. A decomposition is considered balanced if the heights of the
scaling and period-matrices are similar. If we know, that we want to use the sum product, we
should choose the less balanced decomposition with the lower rank to get a better runtime for the
same accuracy or compression ratio.

5.3.8 Further Aggregates

Many more aggregations are just combinations of the ones we have already discussed. A few of
these can be found in Table 5.1.

5.4 Joins

This section discusses the KroneRelations in the context of joins with other relations. Recall that
the KroneRelation can only be joined on the key columns, which allows for a very simple plug-in
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Aggregate Formula

Covariance(d1,1,d2,1) =
<d1,1,d2,1>

md
− <d1,1>

md
· <d2,1>

md

Variance(d1,1) =
<d1,1,d1,1>

md
− <d1,1>

md
· <d1,1>

md

StandardDeviation(d1,1) =
√

Variance(d1,1)

Correlation(d1,1,d2,1) =
Covariance(d1,1,d2,1)

StandardDeviation(d1,1)·StandardDeviation(d2,1)

RootMeanSquare(d1,1) =
√

<d1,1,d1,1>
md

Skewness(d1,1) =

<d1,1,d1,1,d1,1>

md
−3·<d1,1,d1,1>

md
·<d1,1>

md
−<d1,1,d1,1,d1,1>

m3
d

StandardDeviation(d1,1)3

Table 5.1: Further aggregates

replacement of the KroneRelation with the decomposed relations in the context of joins.
Consider a join query of the form R(x, y) ⋊⋉ S(y, z) ⋊⋉ T(z, w) with the corresponding join tree

and SQL query

⋊⋉

R ⋊⋉

S T

SELECT *

FROM R JOIN S ON R.y = S.y

JOIN T ON S.z = T.z;

Further consider that T(z, w) is a KroneRelation with a single key column z and a single value
column w. The index column is omitted to make the notation more readable. The decomposition
of T is given by πz,s·p→w(Ts(z, s) ⋊⋉ Tp(z, p)). This definition can simply be plugged into the join
query to replace T with the decomposed relations:

⋊⋉

R ⋊⋉

S πz,s·p→w

⋊⋉

Ts Tp

SELECT *

FROM R JOIN S ON R.y = S.y

JOIN (

SELECT z, s * p AS w

FROM T_s JOIN T_p

ON T_s.z = T_p.z

) AS T ON S.z = T.z;

To make it more interesting, consider the query R(x, y) ⋊⋉ S(y, z) ⋊⋉ T(z, w1,1, w1,2, w2,1, w2,2),
where T is a KroneRelation with four data-columns w1,1, w1,2, w2,1, w2,2. The decomposition of
T is given by πz,s1·p1→w1,1,s1·p2→w1,2,s2·p1→w2,1,s2·p2→w2,2

(Ts(z, s1, s2) ⋊⋉ Tp(z, p1, p2)):
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⋊⋉

R ⋊⋉

S πz,s1·p1→w1,1,...,s2·p2→w2,2

⋊⋉

Ts Tp

SELECT *

FROM R JOIN S ON R.y = S.y

JOIN (

SELECT z,

s_1 * p_1 AS w_11 ,

s_1 * p_2 AS w_12 ,

s_2 * p_1 AS w_21 ,

s_2 * p_2 AS w_22

FROM T_s JOIN T_p

ON T_s.z = T_p.z

) AS T ON S.z = T.z;

Finally, we need to introduce the rank k of the Kronecker decomposition. This means that the
decomposed relations get an additional rank column r and the decomposition of T is given by

zγSUM(w′
1,1)→w1,1,...,SUM(w′

2,2)→w2,2
(πz,s1·p1→w′

1,1,...,s2·p2→w′
2,2

(Ts(z, r, s1, s2) ⋊⋉ Tp(z, r, p1, p2))).

This results in the new join tree and SQL query

⋊⋉

R ⋊⋉

S zγSUM(w′
1,1)→w1,1,...,SUM(w′

2,2)→w2,2

πz,s1·p1→w′
1,1,...,s2·p2→w′

2,2

⋊⋉

Ts Tp

SELECT *

FROM R JOIN S ON R.y = S.y

JOIN (

SELECT z, SUM(s_1 * p_1) AS w_11 ,

SUM(s_1 * p_2) AS w_12 ,

SUM(s_2 * p_1) AS w_21 ,

SUM(s_2 * p_2) AS w_22

FROM T_s JOIN T_p

ON T_s.z = T_p.z AND T_s.r = T_p.r

GROUP BY z

) AS T ON S.z = T.z;

Aggregating over joins

For the join above, we can approximate the original data using our Kronecker decomposition. But
we sacrifice execution time compared to running the join query on the original relation T. Where
we can gain execution time is when we aggregate over the decomposition.

Consider the query (xγSUM(w1,1)R(x, y) ⋊⋉ S(y, z) ⋊⋉ T(z, w)) with the corresponding join tree.
We can push the aggregation down the join tree, which is what a query optimizer would do:
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xγSUM(w1,1)

⋊⋉

R ⋊⋉

S T

xγSUM(w′
1,1)

⋊⋉

R ⋊⋉

S zγSUM(w1,1)→w′
1,1

T

Using the new query (xγSUM(w′
1,1)

R(x, y) ⋊⋉ S(y, z) ⋊⋉z γSUM(w1,1)→w′
1,1

T(z, w)), allows for a
simple sum over a value column in the KroneRelation T. We already know how to do this directly
on the decomposed relations, giving us the new join tree and query:

xγSUM(w′′
1,1)

⋊⋉

⋊⋉

R ⋊⋉

S zγSUM(w′
1,1)→w′′

1,1

πz,s′1·p′
1→w′

1,1

⋊⋉

z,rγSUM(s1)→s′1 z,rγSUM(p1)→p′
1

Ts Tp

SELECT x, SUM(w_11)

FROM R JOIN S ON R.y = S.y

JOIN (

SELECT z, SUM(s_1_sum * p_1_sum) AS w_11

FROM (

SELECT z, r, SUM(s_1) AS s_1_sum

FROM T_s

GROUP BY z, r

) AS Ts JOIN (

SELECT z, r, SUM(p_1) AS p_1_sum

FROM T_p

GROUP BY z, r

) AS Tp

ON Ts.z = Tp.z AND Ts.r = Tp.r

GROUP BY z

) AS T ON S.z = T.z

GROUP BY x;
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5.5 Experiments

In this section, we evaluate the performance of KroneDB. We compare the runtimes of KroneDuck
over the decomposed relations with the runtime of DuckDB over the original relation. Recall that
KroneDuck only creates the SQL queries and the decomposed relations. The actual execution
of the queries is done by DuckDB in both cases. Note that the implementation of KroneDuck
does not use a rank column in the decomposed relations but instead creates separate columns
for each rank. Furthermore the performance of KronePy over the decomposed data compared to
the performance of an equivalent Python implementation over the original data. Both Python
implementations use NumPy arrays to store and process the data-, scaling- and period-matrices
and take advantage of the tensor operations provided by NumPy.

System Setup The experiments were run on a Debian GNU/Linux 10 (buster) system with an
Intel Xeon Silver 4241 CPU with 24 cores and 48 threads. The system has 200 GB of RAM. For
DuckDB, the pip package duckdb version 0.9.0 was used. DuckDB was configured to use all 48
threads by executing PRAGMA threads=48; before each experiment. The runtime of DuckDB was
measured using the Python APIs explain(’analyze’) method. For Python, version 3.9.16 was
used with the NumPy pip package numpy version 1.26.0. NumPy was configured to use Intel Math
Kernel Library (MKL) version 2023.1.0.

5.5.1 Selection

Figure 5.1: Runtime and speedup of a selection query on the index column. The selected index
is 1′000′000. The speedup of KronePy is compared to the baseline Python implementation and
the speedup of KroneDuck is compared to DuckDB.

The dataset used for the selection queries is the temperatures for all six cities stacked on top
of each other, with the station names (KLO, BAS, BER, GVE, LUG, SIO) as the keys. The period for
the Kronecker decomposition is one day mp = 144. The expectation is generally that the baseline
NumPy and DuckDB implementations perform better than KronePy and KroneDuck because they
do not need to reconstruct the original data from the decomposed relations. The expectations are
met in both, selection by key and selection by value, as can be seen in Figures 11.2 and 11.3 in the
appendix. Figure 5.1 shows the runtime and speedup of a selection query on the index column.
In this case, KroneDuck outperforms DuckDB for the rank 1 and 2 decompositions. The reason
is most likely that it is much faster to select a single row from the much smaller decomposed
relations than to select a single row from the large original relation. Recall that in the KroneDuck
implementation, each rank is stored in additional columns and not in additional rows. Thus,
the decomposed relations have the same number of tuples independent of the rank. For less
selective queries, the advantage of KroneDuck over DuckDB is mitigated because the overhead
of reconstructing the original data becomes more significant. For the same reason is KroneDuck
slower than DuckDB for higher ranks.
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5.5.2 Projection

The same dataset as for the selection queries is used for the projection queries. The expectations
for the projection queries are the same as for the selection queries. And there are no surprises
in this case. The results can be seen in Figures 11.4, 11.5 and 11.6 in the appendix, but are
not discussed in detail here. In summary, KronePy and KroneDuck are slower than the baseline
Python and DuckDB implementations and they are worse for higher ranks if the projection is onto
the value column because the original data needs to be reconstructed.

5.5.3 Sum

The same dataset as for the selection queries is used for the sum query.

Figure 5.2: Runtime and speedup of a sum query on the value column.

In Figure 5.2, we observe that both KroneDuck and KronePy are significantly faster. For rank
1, KronePy is more than 63x faster and KroneDuck is more than 2.3x faster. The speedup is
reduced for higher ranks until it is around 19x for KronePy and 1.3x for KroneDuck at rank 10.

Figure 5.3: Mean result and root mean squared error (RMSE) of a sum query on the value
column.

The accuracy of the sum results is shown in Figure 5.3. To calculate the error of the accuracy,
a root mean squared error (RMSE) is used over the sums for each key. For rank 1, this is around
138′000°C which corresponds to a 0.7% deviation from the correct result. This error shrinks
drastically for higher ranks and is around 50°C for rank 5, which should in most applications be
insignificant. For rank 10 the error is around 5°C for a sum of more than 1.7 million tuples per
key.
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5.5.4 Count

The same dataset as for the selection queries is used for the count query. The speedup for
KroneDuck is around 2.3x for all ranks, because the count query is rank-independent. For the
NumPy implementation, there is no speedup and KronePy is actually 20% slower than the baseline
Python implementation. This is a difference of 0.4 microseconds and is most likely due to one
additional multiplication per key.

5.5.5 Average

The same dataset as for the selection queries is used for the average query. The picture is very
similar to the sum query. The speedup is 32x-14x for KronePy and 2.4x-1.3x for KroneDuck for
ranks 1-10. The error starts at 0.08°C or 0.8% for rank 1 and becomes insignificant for ranks 5
and higher. The resulting plots can be seen in Figures 11.7 and 11.8, in the appendix.

5.5.6 Sum Product

For the sum product experiments, we used a dataset containing the nine different measurement
seen in Table 4.1 for the three cities KLO, BAS, BER. We ran 100 epochs and at each epoch, a
random selection of measurements was chosen. The results are averaged over the epochs. To avoid
one combination of columns dominating the results, the columns were normalized by dividing them
by their max value.

Figure 5.4: Runtime and speedup of a sum product query on the value column.

As seen in Figure 5.4, for the sum product of two columns, the runtime of the KroneDB
implementations, which is quadratic in the rank, makes it that KroneDuck is only faster than
DuckDB until rank 4 and KronePy is only faster until rank 7. Nevertheless, the advantages in the
lower ranks are significant. KronePy is around 57x faster than the baseline Python implementation
and KroneDuck is about 2.8x faster than DuckDB at rank 1. The speedup of KonePy is highly
influenced because the baseline Python implementation is slower than DuckDB, which suggests
that there is a lot of potential to improve the baseline, which would reduce the speedup. The
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baseline Python implementation is not taking full advantage of hyperthreading and is therefore
slower than DuckDB. More important is the speedup of KroneDuck, which is still 2x and 1.4x
faster than DuckDB at rank 2 and 3 respectively.

Looking at the runtimes for the three-column sum product, the speedup of KroneDuck is still
2.8x and 1.4x at rank 1 and 2 respectively.

Figure 5.5: Mean result and root mean squared error (RMSE) of a sum product query on the
value column.

For the two-column sum product, the accuracy of the results starts at an RMSE of 3% of the
average result for rank 1 and drastically decreases to 0.8% and 0.5% for rank 2 and 3 respectively.
This is shown in Figure 5.5, together with the results for the three-column sum product, where
the RMSE starts at 7.8% for rank 1 and decreases to 1.6% for rank 2.

5.5.7 Min, Max

Because only rank 1 is considered, independent of the rank of the decomposition, the speedup is
constant around 23x for KronePy and 2.2x for KroneDuck. The approximated minimum values
have an RMSE of around 6.1°C and are all above the correct minimum values. This was expected
because the approximation of the negative values is particularly bad as discussed in Section 4.4
and the approximation generally tends to be closer to the mean value than the min value. The
approximated maximum values have a much smaller RMSE of around 1.3°C and are all below the
correct maximum values for the same reason.
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Chapter 6

Updates in KroneDB

In this chapter, we will discuss how to update decomposed KroneRelations. In Section 6.1, it is
shown how new data can be added to a decomposed KroneRelation directly in the decomposed
form. More advantages of this method are discussed in the Sections 6.2 and 6.3, where we show
that it is trivial to impute missing values and even possible to detect anomalies in the new data,
respectively. The experimental results are shown in Section 6.4.

6.1 Insert new Data

Consider the simple example

 s11

s21

s31


s1

⊗

[
p11

p21

]
p1

=



s11p11

s11p21

s21p11

s21p21

s31p11

s31p21


d1,1

=



d1

d2

d3

d4

d5

d6


d1,1

,

where s1, p1 and d1,1 are the data-column vectors of S(X1, RID, V1), P(X1, RID,P1), and
D(X1, RID,D1), respectively. The relation D is decomposed with a period of length 2 and is
no longer in the database because only the decomposed relations are stored. Consider that D is
updated with a new value d7. The easiest way is to reconstruct the relation D, add the new value
d7, and decompose it again. However, there are two major problems with this approach.

The most obvious problem is that the new relation D has seven tuples, which is a prime
number, therefore it can only be decomposed with a period of length 1 or 7. Both cases are not
optimal and use more space than just storing the original relation D. It is however not common
to get exactly a prime number of tuples by inserting a new tuple, but also a lot of non-prime
numbers that are not optimal for decomposition.

The second problem is that reconstructing the relation D and decomposing it again is very ex-
pensive. Especially if the relationD is large, the decomposition using SVD is very time-consuming.

To address the first problem, suppose that the original choice of the period length mp was with
good reason. Therefore, it would be better to keep the period length even if new data is inserted.
To do this, the new data needs to be collected in a buffer and inserted at once when the number
of tuples in the buffer is equal to the period length mp. By adding a complete period at once, the
new relation D can be decomposed with the same period length as the original relation D.

The second problem can be solved by using the fact that the new data is added to the end
of the relation D and is, due to the introduced buffering, one whole new period. Looking at the
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example above, adding another period would add the values d7 and d8, which need to be expressed
as the period vector p1 multiplied by some scaling factor:


s11

s21

s31

?


s1

⊗

[
p11

p21

]
p1

=



s11p11

s11p21

s21p11

s21p21

s31p11

s31p21

? p11

? p21


d1,1

=



d1

d2

d3

d4

d5

d6

d7

d8


d1,1

.

This scaling factor can be freely chosen, to fit the new data into the period. There is no need
to decompose the whole relation D again. Of course, this only provides a good approximation if
we assume that the new period of data follows a similar pattern as the previous periods.

Finding the optimal scaling factor s41 is a linear least squares problem. Given the vector of
the new data dnew = [d7, d8]

T and the period vector p1 = [p11, p21]
T , we want to find the scaling

factor s41 that minimizes:

∥dnew − s41p1∥2.

In the simple case, where we only have a single value column and a decomposition of rank 1, the
solution is given by projecting the new data vector dnew onto the period vector p1:

s41 =
⟨p1,dnew⟩
⟨p1,p1⟩

. (6.1)

If the construction of the Kronecker decomposition is done, such that the singular values are
multiplied into the scaling factors, the solution is given by

s41 = ⟨p1,dnew⟩, (6.2)

because the period vector p1 is normalized.
If we introduce rank k, we get a new optimization problem, where we want to minimize

∥dnew − (s141p
1
1 + s241p

2
1 + ...+ sk41p

k
1)∥2,

where pi
1 is the i-th rank of the period vector p1 and si41 is the scaling factor for the i-th rank.

This is again a linear least squares problem, where the ranks of the period vector p1 can be seen
as the columns of a matrix P ′ and the scaling factors si41 as the rows of a vector s′. The resulting
optimization problem is minimizing

∥dnew − P ′s′∥2.

By construction of the Kronecker decomposition using SVD, we know that the ranks of the period
vector p1 are orthogonal, therefore the columns of the matrix P ′ are orthogonal. This means, that
we can solve the optimization problem by projecting the new data vector dnew onto the columns
of the matrix P ′:

s′ = diag(P ′TP ′)−1P ′Tdnew,

where diag(P ′TP ′) is a diagonal matrix with the squared norm of the columns of the matrix P ′

on the diagonal which is used to normalize the columns of the matrix P ′. This corresponds to
1

⟨p1,p1⟩ in (6.1).
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The last thing to introduce is multiple value columns. In this case, we have a matrix P of
period vectors and a matrix S of scaling factors. The optimization problem is minimizing

∥Dnew − s41P∥F ,

where Dnew is a matrix of new data vectors and ∥·∥F is the Frobenius norm. The solution is given
by stacking the columns of the matrix P into a vector p and the columns of the matrix Dnew into
a vector dnew. This way, we successfully reduced the problem to the previous case, where we had
a single value column.

The general solution corresponding to (6.1) is then given by

s′ = diag(P ′TP ′)−1P ′Tdnew,

where

P ′ =
[
vec(P 1

1 ) vec(P 2
1 ) ... vec(P k

1 )
]
and dnew = vec(Dnew).

If the period vectors P i
1 are normalized we can again leave out the normalization as in (6.2) and

get:

s′ = P ′Tdnew.

6.2 Value Imputation

Consider a slightly different example:

 s11

s21

?


s1

⊗

 p11

p21

p31


p1

=



s11p11

s11p21

s11p31

s21p11

s21p21

s21p31

? p11

? p21

? p31


d1,1

=



d1

d2

d3

d4

d5

d6

d7

NULL

d9


d1,1

.

In this example, we have a missing value in the new data vector dnew = [d7, NULL, d9]
T . The

value imputation problem is to find a good approximation for the missing value NULL.
There are multiple ways to solve this problem, using a mean or median value, or using linear

or polynomial interpolation would be the simplest approach. More sophisticated approaches could
be regression models like linear regression or even a principal component analysis (PCA) [AW10].
The obvious parallels between the Kronecker decomposition or low-rank decomposition in general
and PCA suggest that we do not need to use an additional regression model, but can use the
Kronecker decomposition directly to solve the value imputation problem.

Using the same approach as in the previous section, we can find a scaling factor s31 that
minimizes the error for the known values d7 and d9 by removing the missing value from the vector
dnew and the period vector p1 to get d′

new = [d7, d9]
T and p′

1 = [p11, p31]
T . The scaling factor s31

is then given by the projection of the known values d′
new onto the reduced period vector p′

1:

s31 = ⟨p′
1,d

′
new⟩.

The missing value NULL can then be approximated by d8 = s31p21.
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6.3 Detecting Anomalies

Looking at Figure 6.1, we can see how large the error for a new day can get, depending on the
number of days we decompose initially. We could use this knowledge to detect if the error for a
new day is too large and therefore the new day might contain erroneous measurements.

This could in a first step be used to inform the user that the new data might be erroneous and
should be checked.

In a second step, we could use this information to automatically detect erroneous data and
correct it using value imputation. A simple algorithm to correct erroneous data could be the
following:

1. Fit the new data using the update function.

2. Check the error for the new data and if it surpasses a threshold, continue with the next step.

3. Loop:

(a) Calculate the error for each value in the new data compared to the fitted data.

(b) Replace the value with the highest error with NULL.

(c) Fit the new data using value imputation and recalculate the error.

(d) If the error is smaller than the threshold, stop.

6.4 Experiments

6.4.1 Accuracy of Updates

Figure 6.1: Insert a new day of temperature measurements in Kloten. The left plot shows the
development of the error if we decompose the first three days and continue to add new days over
three years. The right plot shows the development of the error if we decompose a specific number
of days and then add the remaining days of the three years using updates.

In Figure 6.1 we can see the accuracy of the updates on the MeteoSwiss data set, specifically
the temperature data in Kloten. The first plot shows the error if we only decompose three days
and then add the remaining days one by one. In blue, we can see something that looks like the
yearly pattern of the temperature seen in Figure 4.1. This pattern is the result of the first three
days being winter days, which means that the decomposition is good for winter days, but not for
other days. The more the new day differs from the first three days, the higher the error gets,
which results in high errors for summer days and low errors for winter days. The approximation
error over all days is shown in orange and suggests that the overall error stabilizes after about 200
days in between 5°C and 6°C for rank 1.
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The second plot shows the error if we decompose a specific number of days and then add the
remaining days of the three years using updates. The blue line shows the approximation error
over all days that are added using updates. The overall error over all 1098 days is again shown in
orange. We can see that the overall error stabilizes after about 200 days, which suggests that it
could be enough to decompose the first 200 days and then add the remaining days using updates.
The dip of the blue line towards the end is probably caused by the fact that the last 300 days are
approximated exceptionally well because there are almost no winter days left, which are hard to
approximate as we have seen in Section 4.4. The steep rise for the last few days is exactly because
this is the start of the next winter.

Figure 6.2: Insert a new year of temperature measurements in Kloten. The left plot shows the
development of the error if we decompose the first year and continue to add new years over 31
years. The right plot shows the development of the error if we decompose a specific number of
years and then add the remaining years of the 31 years using updates.

Figure 6.2 shows the same experiment as Figure 6.1 but for years instead of days. The first
plot shows the error if we only decompose the first year and then add the remaining years one by
one. Compared to Figure 6.1, the overall error stabilizes at a much lower value of about 2°C. This
is because the initial decomposed year already contains all seasons and no completely unknown
daily patterns are added. The error for the new year fluctuates in a comparably narrow range of
about 1.7°C to 2.4°C.

The second plot again shows the error if we decompose a specific number of years and then add
the remaining years of the 31 years using updates. The blue line shows the approximation error
over all years that are added during the updates and suggests that at least the last two years are
slightly different from the other years and are therefore approximated worse. Overall, however, it
can be said that the error is very stable, especially after an initial nine years. It seems that the
years six to nine add the necessary variety to the decomposition to approximate the remaining
years slightly better than the first five years alone.

These experiments conclude that it is possible to decompose a small number of days, around
200, and then add the remaining days using updates without having a significant drop in recon-
struction accuracy, because the most variation is captured. If the very small gain in accuracy
is important, it is helpful to decompose multiple years, in this case, around nine, to capture the
yearly variation well. This is of course only valid for this dataset and might be different for other
datasets.

6.4.2 Accuracy of Value Imputation

In Figure 6.3 we can see the accuracy of the value imputation on the MeteoSwiss data set, specif-
ically the temperature data in Kloten. The results suggest that using higher ranks for value
imputation can hurt the accuracy if there are many missing values. This is probably because the
higher ranks are more sensitive to outliers, which have a greater influence if many other values are
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Figure 6.3: Value imputation on the MeteoSwiss data set, specifically the temperature data in
Kloten. This is the result of decomposing the data over the whole period of 32 years and updating
the relation with one new day. The new day has a fixed number of randomly missing values, which
are then imputed using the method described in Section 6.2. The error is measured as the root
mean square error (RMSE) over the new day.

missing. It might even be a problem that they lose the ability to influence the scaling if they are
missing themselves, but they have a great impact on the root mean square error.

Therefore, if there are many missing values, it is probably better to do the value imputation
and update in two steps. First, impute the missing values using a low rank and then update the
relation with the imputed values using a higher rank decomposition.

For very few missing values, it is still significantly better to use the highest available rank for
value imputation. The same caveat as in the previous section applies, that this is only valid for
this dataset and must be tested for the specific dataset that is used.
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Chapter 7

KroneDB in FAQ

This is a more formal and general treatment of Kronecker decomposition within the general frame-
work of FAQ. It is discussed how KroneRelations can be expressed as FAQ factors and how these
factors can be replaced by the corresponding decomposed relations, to get a new FAQ over the
decomposed relations in Section 7.1. We provide specific examples of aggregations as FAQs and
how they can be modified to use the decomposed relations in Section 7.2, Section 7.3, and Sec-
tion 7.4. Finally, we discuss how a general FAQ containing KroneRelations can be rewritten and
evaluated using the InsideOut algorithm in Section 7.5.

The conclusion of this chapter is a generally applicable method to rewrite FAQs containing
KroneRelations such that they can be evaluated over the decomposed relations. We show that this
evaluation can be done using the InsideOut algorithm without any modifications. Since FAQs are
known to capture computation across many areas, including query evaluation in databases, con-
straint satisfaction problems, linear algebra (matrix chain multiplication, discrete Fourier trans-
form), satisfiability, inference and learning in probabilistic graphical models, machine learning
(cost functions, covariance matrices, learning), and tensor networks in physics. By showing how
our work integrates naturally with FAQ, we effectively enable its use across all these fundamental
problems.

7.1 KroneRelations as FAQ factors

Recall the representation of a Relation as a FAQ factor from Section 2.2. The FAQ factor for the
data-relation D(x, rid,d) is defined as

ψx,rid,d(x, rid,d) =

{
1 if the tuple (x, rid,d) is in D,

0 otherwise,

where x = (x1, . . . , xn) and d = (d1, . . . , dnd
) = (d1,1, . . . , dns,np).

The FAQ factors for the scaling and period-relations S(x, rids, s, r) and P(x, ridp,p, r) are
defined as

σ(x, rids, s, r) = ψx,rids,s,r(x, rids, s, r) =

{
1 if the tuple (x, rids, s, r) is in S,

0 otherwise,

where s = (s1, . . . , sns
) and

ρ(x, ridp,p, r) = ψx,ridp,p,r(x, ridp,p, r) =

{
1 if the tuple (x, ridp,p, r) is in P,

0 otherwise,

where p = (p1, . . . , pnp) respectively.
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Using the FAQ framework allows us to substitute a KroneRelation with the corresponding
decomposed relations by replacing the factor ψx,rid,d(x, rid,d) with the factors σ(x, rids, s, r) and
ρ(x, ridp,p, r) as follows:

ψx,rid,d(x, rid,d) ≈
∑

rids,ridp,s,p,r

σ(x, rids, s, r) · ρ(x, ridp,p, r) · (d = s ∗ p) · (rid = (rids − 1) ·mp;x + ridp). (7.1)

The expressions (d = s ∗ p) and (rid = (rids − 1) ·mp;x + ridp) are virtual factors. These are
not real relations but are used to define the mapping between the data-relation and the scaling
and period-relations.

The first virtual factor (d = s ∗ p) is defined as

ψd,s,p(d, s,p) =

{
1 if du,v = su · pv for all u ∈ [np], v ∈ [ns],

0 otherwise.
(7.2)

and maps the value columns of the data-relation to the value columns of the scaling and period-
relations according to (5.1).

The second virtual factor (rid = (rids − 1) ·mp;x + ridp) is defined as

ψx,rid,rids,ridp
(x, rid, rids, ridp) =

{
1 if rid = (rids − 1) ·mp;x + ridp,

0 otherwise,

where mp;x is the period length of the Kronecker decomposition for the key values x. This factor is
responsible for ensuring the correct mapping of the rows between the data-relation and the scaling
and period-relations according to (4.1).

7.2 The Sum as FAQ

We will start with the sum over a single value column du,v in the data-relation D. This sum can
be expressed as

ϕsum(xf ) =
∑

xf+1,...,n,rid,d

ψx,rid,d(x, rid,d) · du,v. (7.3)

Recall form Section 2.2 that xf is the set of free variables and xf+1,...,n = xf+1, . . . , xn is the set
of bound variables in x and that du,v is the virtual factor defined as ψdu,v

(du,v) = du,v.
Using a rank-1 decomposition, we can rewrite the sum query by substituting the factor

ψx,rid,d(x, rid,d) with the decomposed factors according to (7.1) as follows:

ϕ′sum(xf ) =
∑

xf+1,...,n,rids,ridp,s,p,d

σ(x, rids, s) · ρ(x, ridp,p) · du,v · (d = s ∗ p) (7.4)

=
∑

xf+1,...,n,rids,ridp,s,p

σ(x, rids, s) · ρ(x, ridp,p) · su · pv (7.5)

=
∑

xf+1,...,n

∑
rids,s

σ(x, rids, s) · su

 ·

 ∑
ridp,p

ρ(x, ridp,p) · pv

 . (7.6)

The rank variable r is omitted because we are using a rank-1 decomposition.
The Equation 7.4 is the result of substituting the original relation in (7.3) with the decomposed

relations defined in (7.1). The virtual factor (rid = (rids−1)·mp;x+ridp) can be omitted, because
rid is uniquely defined by rids and ridp and is aggregated over. This allows rid to be removed
from the FAQ completely and makes the values rids and ridp independent of each other.
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Equation 7.5 is the result of substituting the variables in d with the corresponding variables in
s and p according to the column mapping in (7.2). The only variable that is relevant for the sum
is du,v, which is substituted with su · pv. After the substitution, the variable d and the virtual
factor (d = s ∗ p) can be removed from the FAQ, because d is uniquely defined by s and p and is
aggregated over.

From (7.5) to (7.6) we push the aggregation over rids and su down to σ(x, rids, s) and the
aggregation over ridp and pv to ρ(x, ridp,p), because those aggregations are independent of each
other. Therefore, we get two independent sums over the scaling and period-relation, which can be
calculated individually. Comparing this to (5.2), we can see that we reached the same conclusion
by rewriting the sum in FAQ and linear algebra.

For the rank-k decomposition, we no longer omit the rank variable r and get the following
FAQ:

ϕ′sum(xf ) =
∑

xf+1,...,n,r

∑
rids,s

σ(x, rids, s, r) · su

 ·

 ∑
ridp,p

ρ(x, ridp,p, r) · pv

 .

This is again parallel to the linear algebra representation in (5.3).

7.3 Other Aggregates as FAQs

This section briefly discusses how the other aggregates can be expressed in FAQ.

7.3.1 The Count as FAQ

The count as FAQ over the data-relation D(x, rid,d) is defined as

ϕcount(xf ) =
∑

xf+1,...,n,rid,d

ψx,rid,d(x, rid,d).

Using the decomposed relations S(x, rids, s, r) and P(x, ridp,p, r), the count can be expressed as

ϕ′count(xf ) =
∑

xf+1,...,n,rids,ridp,s,p,r

σ(x, rids, s, r) · ρ(x, ridp,p, r) · (r = 1)

=
∑

xf+1,...,n

 ∑
rids,s,r

σ(x, rids, s, r) · (r = 1)

 ·

 ∑
ridp,p,r

ρ(x, ridp,p, r) · (r = 1)

 .

7.3.2 The Average as FAQ

The average is simply the sum divided by the count, therefore can the sum and the count query
be used to calculate the average. It is not possible to express the average as a single FAQ but the
sum and count can be expressed as a single FAQ by using the sum-product semiring over pairs
((R,R), (+,+), (·, ·), (0, 0), (1, 1)). Thus,

ϕ(sum,count)(xf ) =
∑

xf+1,...,n,rid,d

ψx,rid,d(x, rid,d) · (du,v, 1) ,

where ψdu,v
(du,v) = (du,v, 1).

The sum-count FAQ over the decomposed relations is defined as

ϕ′(sum,count)(xf ) =∑
xf+1,...,n,r

∑
rids,s

σ(x, rids, s, r) · (su, 1) · (r = 1)

·

 ∑
ridp,p

ρ(x, ridp,p, r) · (pv, 1) · (r = 1)

 ,
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where ψsu(su) = (su, 1), ψpv (pv) = (pv, 1) and

(r = 1) = ψr(r) =

{
(1, 1) if r = 1,

(1, 0) otherwise.

7.3.3 The Minimum and Maximum as FAQs

The minimum and maximum queries can be expressed as FAQ by using the min-product and
max-product semirings respectively. The min-product semiring is defined as (R,min, ·,∞, 0) and
the max-product semiring is defined as (R,max, ·,−∞, 0). The FAQ for the minimum is defined
as

ϕmin(xf ) = min
xf+1,...,n,rid,d

ψx,rid,d(x, rid,d) · du,v.

Substituting the data-relation with the decomposed relations results in the following FAQ:

ϕ′min(xf ) = min
xf+1,...,n,rids,ridp,s,p,d,r

σ(x, rids, s, r) · ρ(x, ridp,p, r) · du,v · (d = s ∗ p) · (r = 1)

= min
xf+1,...,n,rids,ridp,s,p,r

σ(x, rids, s, r) · ρ(x, ridp,p, r) · su · pv · (r = 1).

The FAQ for the maximum query is defined analogously.

7.4 The Sum Product as FAQ

As discussed in Section 5.3.5, the sum product is a general case of the sum in linear algebra. The
same is true for FAQ, where the sum is the sum product over a single value column and the sum
product is expressed like the sum but with multiple virtual factors for the value columns. Thus,

ϕsp(xf ) =
∑

xf+1,...n,rid,d

ψx,rid,d(x, rid,d) · du1,v1 · . . . · dul,vl ,

where {du1,v1 , . . . , dul,vl
} = dl ⊆ d is the subset of variables which are used in the sum product.

As seen for the other aggregates, the factor for the data-relation ψx,rid,d(x, rid,d) can be
replaced by the decomposed factors to get a new FAQ over the decomposed relations. For rank 1
this is trivial and we get

ϕ′sp(xf )

=
∑

xf+1,...,n,rids,ridp,s,p,d

σ(x, rids, s) · ρ(x, ridp,p) · du1,v1 · . . . · dul,vl
· (d = s ∗ p)

=
∑

xf+1,...,n,rids,ridp,s,p

σ(x, rids, s) · ρ(x, ridp,p) · su1
· pv1 · . . . · sul

· pvl

=
∑

xf+1,...,n

∑
rids,s

σ(x, rids, s) · su1
· . . . · sul

 ·

 ∑
ridp,p

ρ(x, ridp,p) · pv1 · . . . · pvl

 ,

where the rank variable r is omitted because we are using a rank-1 decomposition. This is the
same conclusion as was reached in (5.8).

For the rank-k decomposition, we need to make sure that the summation over the rank variable
r is done before the multiplication over the value columns as was done in (5.10). To ensure this, we
need to rewrite the query over the data-relation to separate the virtual factors for the value columns
and pair each value column with a separate data-relation factor. To ensure the elementwise
multiplication over the value columns, they all share the same rid-value. This rewriting looks like
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this:

ϕsp(xf ) =
∑

xf+1,...,n,rid,d

ψx,rid,d(x, rid,d) · du1,v1 · . . . · dul,vl

=
∑

xf+1,...,n,rid,d1,...,dl

ψx,rid,d1(x, rid,d1) · d1u1,v1 · . . . · ψx,rid,dl(x, rid,dl) · dlul,vl
.

Each factor can then be replaced separately by the decomposed factors, to get:

ϕ′sp(xf ) =

=
∑

xf+1,...,n,rid,d1,...,dl ∑
rid1

s,rid
1
p,s

1,p1,r1

σ(x, rid1s, s
1, r1) · ρ(x, rid1p,p1, r1) · d1u1,v1

· (d1 = s1 ∗ p1) · (rid = (rid1s − 1) ·mp;x + rid1p)

)
· ...

·

 ∑
ridl

s,rid
l
p,s

l,pl,rl

σ(x, ridls, s
l, rl) · ρ(x, ridlp,pl, rl) · dlul,vl

· (dl = sl ∗ pl) · (rid = (ridls − 1) ·mp;x + ridlp)

)
(7.7)

=
∑

xf+1,...,n,rid,rids,ridp,d1,s1,p1,r1,...,dl,sl,pl,rl

σ(x, rids, s
1, r1) · ρ(x, ridp,p1, r1) · d1u1,v1 · ... · σ(x, rids, s

l, rl) · ρ(x, ridp,pl, rl) · dlul,vl

· (d1 = s1 ∗ p1) · ... · (dl = sl ∗ pl) · (rid = (rids − 1) ·mp;x + ridp) (7.8)

=
∑

xf+1,...,n,rids,ridp,s1,p1,r1,...,sl,pl,rl

σ(x, rids, s
1, r1) · s1u1

· ρ(x, ridp,p1, r1) · p1v1 · ... · σ(x, rids, s
l, rl) · slul

· ρ(x, ridp,pl, rl) · plvl
(7.9)

=
∑

xf+1,...,n,r1,··· ,rl∑
rids

(∑
s1

σ(x, rids, s
1, r1) · s1u1

· ... ·
∑
sl

σ(x, rids, s
l, rl) · slul

)

·
∑
ridp

∑
p1

ρ(x, ridp,p
1, r1) · p1v1 · ... ·

∑
pl

ρ(x, ridp,p
l, rl) · plvl

 . (7.10)

The equation (7.7) is the result of substituting each of the factors ψx,rid,d1(x, rid,d1), . . . ,
ψx,rid,dl(x, rid,dl) with the corresponding decomposed factors according to (7.1).
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Because rid and x uniquely define ridis and ridip for all i ∈ [l], ridis and ridip respectively must
be equal for all i ∈ [l] and can be replaced with a single rids and ridp. This simplification together
with the pulling up of all aggregations is shown in (7.8).

From (7.8) to (7.9) we substitute the variables in d1, . . . ,dl with the corresponding variables in
s1,p1, . . . , sl,pl according to the column mapping di = si∗pi and can remove the column mapping
factors and the variables d1, . . . ,dl from the FAQ, as they are uniquely defined by s1,p1, . . . , sl,pl

and are aggregated over. Additionally, can the rid variable together with the row mapping factor
(rid = (rids − 1) ·mp;x + ridp) be removed, because rid is uniquely defined by rids, ridp and x
and is aggregated over.

In (7.10), the marginalization over rids, s
1, . . . , sl and ridp, p

1, . . . ,pl is pushed down to the
corresponding factors. Comparing (7.10) to (5.12), shows that the conclusion is the same for FAQ
and linear algebra.

7.5 Solving FAQs: The InsideOut Algorithm

A general algorithm to solve FAQ expressions is the InsideOut algorithm first introduced by
Abo Khamis et al. [AKNR16]. In our description of the algorithm we closely follow the description
in [Olt23]. The algorithm consists of two basic steps.

Step one in the Marginalization or variable elimination step, where bound variables are elim-
inated by marginalizing over them. Which bound variables are eliminated first is determined by
a given marginalization order τ over the bound variables. Each marginalization step removes the
rightmost bound variable xi from τ and replaces the factors that contain xi with a new factor
that no longer contains xi. To compute this new factor a worst-case optimal join algorithm like
the Leapfrog Triejoin [Vel14] is used. This results in a simplified query with a hypergraph H′ with
fewer hyperedges and variables.

The second step is the Evaluation step. First, a hypertree decomposition T for the simplified
hypergraph H′ is constructed. The bags of the hypertree are materialized using Leapfrog Triejoin.
Then, the new α-acyclic FAQ ϕ′ is evaluated with Yannakakis’ algorithm [Yan81].

7.5.1 Substituting KroneFactors

We describe how to use the InsideOut algorithm to evaluate FAQs in KroneDB where some of the
factors are KroneRelations. For simplicity, we only consider FAQs over the sum-product semiring
(R,+, ·, 0, 1), yet our approach can be generalized to arbitrary semi-rings. Assume we have a factor
ψK(xK′ , rid,d) that corresponds to a KroneRelation with the corresponding hyperedge K ∈ E ,
which we call a KroneFactor. Consider an FAQ where one of the factors is a KroneFactor:

ϕ(xf ) =
∑
xf+1

· · ·
∑
xn

∑
rid

∑
d

 ∏
S∈E\{K}

ψS(xS)

 · ψK(xK′ , rid,d) · du1,v1 · . . . dul,vl .

The hyperedge K has a corresponding KroneFactor ψK′(xK′ , rid,d) = ψK(xK), where K ′ ⊂ K,
such that xK = xK′ ∪ {rid} ∪ d.

• xK′ = xK \ ({rid} ∪ d) is the set of variables that correspond to the key columns of the
KroneRelation,

• rid, for which {rid} = xK \ (xK′ ∪ d), is the variable that corresponds to the index column
of the KroneRelation,

• d = xK \ (xK′ ∪ {rid}) is the set of variables that correspond to the data columns of the
KroneRelation,

• dui,vi ∈ d is the variable that corresponds to the data column of the KroneRelation that is
used in the factor with the same name dui,vi .
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Using the factor substitution rule from (7.9) we can rewrite the FAQ ϕ to

ϕ′(xf ) =
∑
xf+1

· · ·
∑
xn

∑
r1,...,rl

∑
rids

∑
ridp

∑
p1,...,pl

∑
s1,...,sl

 ∏
S∈E\{K}

ψS(xS)


·σ(xK′ , rids, s

1, r1)·s1u1
·ρ(xK′ , ridp,p

1, r1)·p1v1 ·. . .·σ(xK′ , rids, s
l, rl)·slul

·ρ(xK′ , ridp,p
l, rl)·plvl .

This results in a new hypergraph H′ = (V ′, E ′) with the set of vertices V ′ which is the set V
without the indices for rid and d but with added indices for the new variables r1, . . . , rl, rids,
ridp, p

1, . . . ,pl and s1, . . . , sl. The new set of hyperedges is such that

E ′ = E \ {K} ∪ {Σ1, . . . ,Σl, P 1, . . . , P l, S1
u1
, . . . , Sl

ul
, P 1

v1 , . . . , P
l
vl
}.

The hyperedges Σi and P i correspond to the factors σ(xK′ , rids, s
i, ri) and ρ(xK′ , ridp,p

i, ri),
respectively and Si

ui
and P i

vi are the hyperedges that correspond to the factors siui
and pivi

,
respectively.

Marginalization Order

The choice of the marginalization order τ influences the runtime of the algorithm. There can be
multiple optimal marginalization orders for a given FAQ. Given an optimal marginalization order
τ for ϕ, by definition of the KroneRelation, we know that only the variables xK′ can occur in any
other factor of ϕ, we can therefore assume that rid and d are the rightmost variables in τ without
loss of optimality. The evaluation of ϕ′ using InsideOut requires a new marginalization order τ ′,
where the rightmost variables rid and d are removed from τ and replaced with the new variables
r1, . . . , rl, rids, ridp, s

1, . . . , sl and p1, . . . ,pl in this order.

7.5.2 Evaluating ϕ′

If ϕ contains more than one KroneFactor, we can repeat the construction of ϕ′, H′ and τ ′ iteratively
until all KroneFactors are substituted. Given the final ϕ′ with the hypergraph H′ = (V ′, E ′) and
the marginalization order τ ′, it is possible to evaluate ϕ′ using the InsideOut algorithm as described
in [AKNR16] and [Olt23].

Semiring Marginalization

Recall that we only consider the sum-product semiring (R,+, ·, 0, 1) and that all marginalizations
in ϕ′ (and ϕ) use the sum. Therefore, each marginalization step of InsideOut applies Semiring
Marginalization. To demonstrate how Semiring Marginalization works on a KroneFactor, the
marginalization of r1, . . . , rl, rids, ridp, s

1, . . . , sl,p1, . . . ,pl in ϕ′ is explained on a high level. We
will omit the effect of indicator projections at each step for simplicity. For this purpose, we only
consider the factors that contain these bound variables. For demonstration purposes, a notation
is used where the sums are already pushed down as in (7.10):

ϕ′(xf ) = · · ·
∑
r1

· · ·
∑
rl

∑
rids

(∑
s1

σ(xK′ , rids, s
1, r1) · s1u1

· ... ·
∑
sl

σ(xK′ , rids, s
l, rl) · slul

)

·
∑
ridp

∑
p1

ρ(xK′ , ridp,p
1, r1) · p1v1 · ... ·

∑
pl

ρ(xK′ , ridp,p
l, rl) · plvl

 .

The marginalization over pl removes the factors ρ(xK′ , ridp,p
l, rl) and plvl from ϕ′ and replaces

them with a new factor ρ′(xK′ , ridp, r
l) in |pl| = np steps. The new factor ρ′(xK′ , ridp, r

l) returns
the value for the attribute plvl of the period-relation P, for the unique tuple with the values
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xK′ , ridp and rl if such a tuple exists, otherwise it returns 0. These marginalization steps are
repeated for pl−1, . . . ,p1, which results in a new factors ρ′(xK′ , ridp, r

l−1), . . . , ρ′(xK′ , ridp, r
1).

The same steps are repeated for sl, . . . , s1, which results in a new factors σ′(xK′ , rids, r
l), . . . ,

σ′(xK′ , rids, r
1):

ϕ′′(xf ) = · · ·
∑
r1

· · ·
∑
rl

(∑
rids

σ′(xK′ , rids, r
1) · ... · σ′(xK′ , rids, r

l)

)

·

∑
ridp

ρ′(xK′ , ridp, r
1) · ... · ρ′(xK′ , ridp, r

l)

 .

The next step is to marginalize over ridp. This removes the factors ρ′(xK′ , ridp, r
l), . . . ,

ρ′(xK′ , ridp, r
1) and replaces them with a new factor ρ′′(xK′ , r1, . . . , rl). The new factor ρ′′ returns

the sum product of the columns pv1 , . . . , pvl of the period-relation P where the rank attribute r
is equal to r1, . . . , rl, respectively. The same steps are repeated for rids, which results in a new
factor σ′′(xK′ , r1, . . . , rl):

ϕ′′′(xf ) = · · ·
∑
r1

· · ·
∑
rl

(
σ′′(xK′ , r1, . . . , rl) · ρ′′(xK′ , r1, . . . , rl)

)
.

The last step is to marginalize over r1, . . . , rl. This removes the factors σ′′(xK′ , r1, . . . , rl)
and ρ′′(xK′ , r1, . . . , rl) and replaces them with a new factor ψK′(xK′) in l steps. This returns
the result of the sum product of the columns du1,v1 , . . . , dul,vl of the KroneRelation D for every
combination of the variables xK′ :

ϕ′′′′(xf ) =
∑
xf+1

· · ·
∑
xn

 ∏
S∈E′′′′\{K′}

ψS(xS)

 · ψK′(xK′).

From this point on, the marginalization continues for all xf+1, . . . , xn exactly as described in
[AKNR16] and [Olt23].

76



Chapter 8

Related Work

8.1 Time Series Databases

Relational database management systems are usually deemed unsuitable for storing and processing
time series data [DF14]. Therefore, many specialized time series databases have been developed.

A major challenge of time series databases is reducing the number of data points to be stored.
The simplest and most common approach is data sampling, where only every n-th datapoint is
stored, or data downsampling, where multiple datapoints are aggregated into one datapoint by
taking the mean or some other aggregation function. The most popular like InfluxDB [Zeh17] and
RRDTool [Oet05] usually use these approaches, by removing more data points for older data.

Another approach is to use a linear approximation of the data by connecting selected data
points with straight lines. These data points can be uniformly spaced or selected by some impor-
tant measurement. [Fu11]

More advanced methods represent time series in the transform domain. These methods include
the Discrete Fourier Transform (DFT), the Principle Component Analysis (PCA) and Singular
Value Decomposition (SVD) [KJF97]. [Fu11]

While the Kronecker decomposition is also computed using the SVD, it has the advantage
that it can exploit the repeating structure of periodic time series. This will be discussed in much
greater detail in Section 2.1.

8.2 Applications of the Kronecker Decomposition

Decomposing a matrix into one or more Kronecker products is sometimes called Kronecker product
decomposition [PBC18a, HTMN22, TWL+20] or Kronecker decomposition [TCN+22]. Finding
the best possible decomposition is called the Nearest Kronecker Product (NKP) problem by Loan
[Loa00].

The Kronecker decomposition is heavily used in the field of audio and signal processing
[PBC18b, EIPBC19, ZHL+17].

Another field where the Kronecker decomposition has been used in recent years is neural
network compression, which aims to reduce the size of neural networks by training small networks
to mimic larger networks or ensemble models [BCNM06, HVD15]. The main idea behind model
compression using the Kronecker decomposition is to decompose the weight matrices of the neural
network into a linear combination of Kronecker products of smaller matrices. This has been
done for fully connected layers [ZW15], recurrent neural networks (RNNs) [TBG+20], language
models [TWL+20], convolutional neural networks (CNNs) [HTMN22], and transformer networks
[TCN+22].

To the best of our knowledge, the Kronecker decomposition has not been used to compress
dense data in database relations.
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Chapter 9

Future Work and Open Ends

9.1 Tensor Representation and Neural Networks

In this thesis, we used the relational representation for data matrices in relations. This means
that the data matrix D is represented in the relation D by the columns d1, . . . , dn. Together with
the rid column, this results in the relation D(rid, d1, . . . , dn), where the value of the i-th row and
j-th column is the value of the attribute dj in the tuple with the rid value i.

Another way to represent the data matrix D is to use the tensor representation, where the
data relation D only has a single data column d and an additional cid column which represents
the column index of the data. This results in the relation D(rid, cid, d), where the value of the
i-th row and j-th column is the value of the attribute d in the tuple with the rid value i and the
cid value j.

One could also use the tensor representation to represent KroneRelations and this would have
certain advantages and disadvantages compared to the relational representation. A disadvantage
is that some queries become more complex because the column needs to be fixed in the query
to do column-wise aggregates. It is also less natural to store the data in this way in relational
databases. An advantage of the tensor representation is that the indexing of rows and columns
is done using the same mechanism, which better reflects the Kronecker product as a concept in
linear algebra. Another advantage is that using the tensor representation, it is trivial to do a
matrix multiplication in SQL using the query:

SELECT A.rid , B.cid , SUM(A.v * B.v) AS v

FROM A, B

WHERE A.cid = B.rid;

where v is the value column of the relations A and B.
During the work on this thesis, we also investigated the use of KroneDB to store and query

neural networks. For this purpose, it was necessary to implement the matrix multiplication in
SQL, which was based on the tensor representation. A fully connected layer can be represented as
a matrix-vector product Dx where D is the weight matrix and x is the input vector. In [TCN+22]
it is shown that this can be done efficiently using the Kronecker decomposition, because

Dx = (S ⊗ P )x = vec(P vec−1
np,ns

(x)S⊤),

where vec is the vectorization operator discussed in Section 2.1. We used this approach to im-
plement a fully connected neural network as a series of SQL queries in KroneDB, but did not
investigate further after our initial experiments did not show any promising results.

It should be further investigated if the advantages of the tensor representation outweigh the
disadvantages and if it is worth it to use the tensor representation in KroneDB. Especially the
question of the tensor representation together with the Kronecker decomposition being used to
efficiently implement simple neural networks in SQL should be investigated further.
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9.2 Implementation

The implementation of KroneDB is still in an early stage and was mainly developed to evaluate the
concepts presented in this thesis. Therefore, it would be beneficial to improve the implementation
in the future, such that it can be used to automatically decompose and query relations in a
database with many other relations, which can be decomposed or not.

9.3 Arbitrary Datasets

The Kronecker decomposition is a general method to decompose matrices into Kronecker products.
It is not limited to the decomposition of time series data. Even if there are no obvious periodic
repeating patterns in the data, the Kronecker decomposition might still exploit structure in the
data to reduce the number of parameters needed for a good approximation. We already discussed
in Section 4.5 that the Kronecker decomposition can exploit structure in both dimensions of the
data matrix, not just the temporal dimension.

This suggests that there are many more suitable datasets for the Kronecker decomposition,
outside of time series data. In our successful experiments, the data has a natural temporal order.
We also did experiments with machine learning datasets, over unordered relational data, where
the Kronecker decomposition did not perform well.

It would be interesting to investigate further which datasets are suitable for the Kronecker
decomposition and which are not.

9.4 Comparison to Specialized Database Systems

This thesis shows that the Kronecker decomposition improves the runtime of queries on time series
in a relational database management system (RDBMS). It does not compare the performance of
KroneDB to specialized time series databases like InfluxDB [Zeh17] or RRDTool [Oet05]. It might
be interesting to see how KroneDB compares to these specialized databases in terms of performance
and storage space, to evaluate the approach of leveraging RDBMSs to store and query time series
data.

9.5 Special Index Columns

There can be some examples where it makes sense to avoid the abstraction of the rid column and
use the real index column instead. This works if the original index column is easily divided into a
scaling index and a period index. We can show this with our motivating example, the temperature
data from Kloten ZH (Table 3.1), where the index column is the time column.

If we take a period length of 1 day, we can very nicely divide the time column into a scaling
index and a period index. The scaling index would be the date and the period index would be
the time of day. This means, that selecting a time involves splitting the requested time into the
date and the time of day and directly using these two values to select or join on the scaling- and
period-matrix.

Thus, to select all rows where the time is ”01.01.2018 12:00”, we can use the date ”01.01.2018”
to index the scaling-matrix and the time of day ”12:00” to index the period-matrix. The FAQ for
the original selection query would look like this:

ϕ(time, d) = ψtime,d(time, d) · (time = ”01.01.2018 12:00”).

This query can be rewritten to work with the decomposed data by splitting the time into the date
and the time of day:

κ(date,∆time, d) =

σ(date, s) · ρ(time, p) · (d = s · p) · (date = ”01.01.2018”) · (∆time = ”12:00”).
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This also allows us to do some more interesting queries very efficiently, like selecting all rows where
the time is 07:00:

κ(date,∆time, d) = σ(date, s) · ρ(∆time, p) · (d = s · p) · (∆time = ”07:00”).

If we want to select a range of values that starts and/or ends in the middle of a period, we can use
the same approach, but we need to split the requested range into multiple ranges for full periods
and partial periods. To select all rows where the time is in the range [01.01.2018 12:00, 01.02.2018
12:00),

ϕ(time, d) = ψtime,d(time, d) · (”01.01.2018 12:00” ≤ time < ”01.02.2018 12:00”),

we need to split the time range into three parts. The first part would be the range [01.01.2018
12:00, 02.01.2018 00:00), the second part would be the range [02.01.2018 00:00, 01.02.2018 00:00)
and the third part would be the range [01.02.2018 00:00, 01.02.2018 12:00):

κ1(date,∆time, d) = σ(date, s) · ρ(∆time, p) · (d = s · p)·
(date = ”01.01.2018”) · (”12:00” ≤ ∆time < ”24:00”)

κ2(date,∆time, d) = σ(date, s) · ρ(∆time, p) · (d = s · p)·
(”02.01.2018” ≤ date < ”01.02.2018”)

κ3(date,∆time, d) = σ(date, s) · ρ(∆time, p) · (d = s · p)·
(date = ”01.02.2018”) · (”00:00” ≤ ∆time < ”12:00”).

This can of course be generalized to any period length and the index column does not have to
be a time column. As long as the values are sorted by the index column, and the delta between
two consecutive values is constant, we can use the same approach. All we need to know is the
first index value index0, the delta between two consecutive index values ∆index, and the period
length mp. This means that the index of the scaling-matrix is the first value of each period and
the index of the period-matrix is the delta from the start of the period to the requested index
value:

indexscaling = [index0 + (i− 1)∆index ·mp|i ∈ 1, . . . ,ms]

indexperiod = [(i− 1)∆index|i ∈ 1, . . . ,mp]

, where ms =
m
mp

is the length of the scaling-matrix and m is the length of the timeseries.

This indexing scheme could be very useful in specific applications and it would be interesting
to investigate this further.
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Chapter 10

Conclusion

The thesis concludes that the Kronecker decomposition can be used to efficiently store and query
time series data with a periodic structure.

It allows to save storage space by providing a compression method that exploits the structure
in the data and improves the approximation accuracy compared to other compression methods.
Many data-dependent choices influence the quality of the approximation and need to be chosen
carefully. The main choice that is heavily dependent on the data is the period length of the
Kronecker decomposition. The best case is if the data has a natural period length, like the day
cycle in weather or traffic data. Then, the period length can be chosen to be the length of the
natural period or a multiple of it. Other choices include if certain columns or keys should be
decomposed together and if the data should be normalized or shifted before the decomposition.

Querying the decomposed data directly is possible and efficient, especially for aggregation
queries. It is explained how SQL queries can be rewritten to use the decomposed relations instead
of the original data in any relational database management system (RDBMS) and immediately
benefit from the more efficient querying.

Updates to the data can be handled by updating the decomposed relations directly and very
efficiently, which also allows for streaming data to be decomposed and queried. During these
updates, the new data points can automatically be completed using the learned structure of the
data and anomalies can be detected and handled automatically.

It is shown how the KroneDecomposition can be used inside the FAQ framework. The hy-
peredges for KroneRelations can simply be substituted with new hyperedges for the decomposed
relations and the InsideOut algorithm can be used to query the decomposed relations efficiently.
This integration into the FAQ framework allows for the use of our work across a wide range of
fundamental problems.

A system called KroneDB is implemented to demonstrate the concepts presented in this thesis.
Experiments using this system on real-world data show that the theoretical advantages of the
Kronecker decomposition can be realized in practice. The results are very promising and suggest
that traditional RDBMSs might be able to rival specialized databases in the future.
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Usage of generative AI

In agreement with Prof. Dr. Dan Olteanu, the following forms of generative AI were used in this
thesis:

1. Github Copilot and ChatGPT were used as coding assistance in the implementation of the
software.

2. Spellchecking, grammar checking, and style checking were done using Grammarly, Github
Copilot, and ChatGPT.

3. Writing LaTeX code to create figures, tikz diagrams, and matrices was assisted by Github
Copilot and ChatGPT.
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Chapter 11

Appendix

In this chapter, the SQL query for the sum product is shown in Figure 11.1. Some additional
runtime results are shown in Figures 11.2, 11.3, 11.4, 11.5, 11.6, 11.7 and 11.8.
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SELECT x, D_1.d_1 + D_2.d_2 + D_3.d_3 + D_4.d_4 AS d

FROM (

SELECT x, S_1.s_1_prime * P_1.p_1_prime AS d_1

FROM (

SELECT x, SUM(s_1 * s_2) AS s_1_prime

FROM (

SELECT x, rid_s , s_1

FROM scaling

WHERE r = 1

) JOIN (

SELECT x, rid_s , s_2

FROM scaling

WHERE r = 1

)

GROUP BY x

) AS S_1 JOIN (

SELECT x, SUM(p_1 * p_2) AS p_1_prime

FROM (

SELECT x, rid_p , p_1

FROM period

WHERE r = 1

) JOIN (

SELECT x, rid_p , p_2

FROM period

WHERE r = 1

)

GROUP BY x

) AS P_1

) AS D_1 JOIN (

SELECT x, S_2.s_2_prime * P_2.p_2_prime AS d_2

FROM (

SELECT x, SUM(s_1 * s_2) AS s_2_prime

FROM (

SELECT x, rid_s , s_1

FROM scaling

WHERE r = 1

) JOIN (

SELECT x, rid_s , s_2

FROM scaling

WHERE r = 2

)

GROUP BY x

) AS S_2 JOIN (...) AS P_2

) AS D_2 JOIN (...) AS D_3 JOIN (...) AS D_4;

Figure 11.1: SQL query for the sum product
SELECT x, SUM(d_11 * d_22) AS d FROM data GROUP BY x;

over a rank-2 KroneDecomposition.
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Figure 11.2: Runtime and speedup of a selection query on the key column. The selected key is
KLO.

Figure 11.3: Runtime and speedup of a selection query on the value column. The selected value
is > 20°C on the only value column Temperature_2m (°C).

Figure 11.4: Runtime and speedup of a projection query onto the key column.
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Figure 11.5: Runtime and speedup of a projection query onto the index column.

Figure 11.6: Runtime and speedup of a projection query onto the value column.

Figure 11.7: Runtime and speedup of an average query on the value column.

89



Figure 11.8: Mean result and root mean squared error (RMSE) of an average query on the value
column.
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