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Zusammenfassung

Die Informationsgewinnung aus Knowledge Graphen ist aufgrund der Semantik und
Komplexität für ungeübte Benutzer schwierig. Um dies zu vereinfachen, untersuchen wir
die automatisierte Erstellung von Sätzen, basierend auf einer Sequenz von Knowledge
Graph Entitäten. Während in früheren Arbeiten hauptsächlich Vorlagen oder spezial-
isierte Encoder-Decoder-Modelle trainiert wurden, konzentrieren wir uns auf die Ver-
wendung von Transformern und bereits vortrainierten Modellen. Die Daten, die für
das Training dieser Modelle verwendet werden, entspringen dem frei verfügbaren T-
REx Datenset. Dieses verbindet Wikidata Entitäten, inklusive deren Labels und IDs,
mit Wikipediaartikeln. Basierend auf diesen Daten untersuchen wir über 60 Modelle
auf ihre Fähigkeit der Satzgenerierung. Zudem wird der Einfluss einer Inputsequenz,
basierend auf Wikidata IDs anstelle von Wikidata Labels, untersucht. Unsere Resultate
zeigen, dass vortrainierte Modelle unsere eigens trainierten Modelle übertreffen. Eben-
falls ist das Erzeugen natürlicher Sätze basierend auf Input IDs deutlich schwieriger als
jenes basierend auf einer Sequenz aus Labeln.





Abstract

Understanding the semantics and interpreting the information inside a knowledge graph
is challenging for an untrained user. To ease the access to this knowledge, we investi-
gate how natural language-like sentences can be generated from a sequence of knowledge
graph entities and relations between them. Whereas early work is based on template-like
architectures or specialized encoder-decoder architectures, this work focuses on the use
of Transformers and large pretrained language models. To deal with real-world knowl-
edge graphs and text across many different domains we incorporate the T-REx dataset
aligning Wikidata entities and relations with Wikipedia articles. We compare the perfor-
mance between baseline models and finetuned large pretrained language models on the
task of generating Wikipedia alike sentences. Additionally, we show the impact of using
an input sequence of Wikidata IDs over an input sequence of the corresponding labels.
By training over 60 different model configurations, we do an exhaustive parameter search
to investigate our models. Results suggest that finetuning a pretrained language model
outperforms the trained baseline model with respect to generating natural language-like
sentences. Furthermore, we show that training using entity IDs over their respective
labels requires task-specific adaptions with which the proposed models have difficulties.





Contents

1 Introduction 1

2 Related Work 5
2.1 Template-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Neural Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Background 11
3.1 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Methods 19

5 Setup 25
5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Results 33
6.1 Sentence Generation Based on Wikidata Labels . . . . . . . . . . . . . . . 33
6.2 Label-Based vs. ID-Based Generation . . . . . . . . . . . . . . . . . . . . 38

7 Conclusions 47

A Appendix 53





1

Introduction

Since the introduction of the RDF standard in 2004 and Google’s Knowledge Graph in
2012, several knowldege graphs have emerged, including but not limited to DBPedia,
Wikidata, Freebase, and Google’s Knowledge Vault. Even though architectures between
knowledge graphs differ, the essence of having data modeled as a subject-predicate-object
triple can be seen across implementations. Subject and object in this context describe
real-world objects (entities) and the predicate describes the relationship between these
entities. Having many triples in a single knowledge graph thus results in an extensive
network of facts. The public can use the factual knowledge of such a graph for fast and
precise knowledge retrieval about real-world objects and their relations.

But even though knowledge graphs are defined by precise terms and a well-defined
structure, they are hard to interpret for untrained users. Thus, understanding the se-
mantics of a knowledge graph becomes a challenge for the untrained user, which leads to
a limited group of users having direct access to the knowledge hidden inside a knowledge
graph itself.

To deal with this issue, many knowledge graphs include human-readable labels or
short descriptions of entities and their relations. However, creating textual components
is time consuming so that many entities and larger graph structures do not contain any
textual descriptions. Which in turn increases the barrier for the public to use the data
stored inside a knowledge graph. To achieve this on a large scale demands methods that
can solve this objective automatically.

The task of creating natural language-like descriptions from graph data has been
approached from different perspectives over the years. Early work mainly focused on
completing handcrafted or learned templates with entity information based on an OWL
ontology [Bernstein and Kaufmann, 2006, Galanis and Androutsopoulos, 2007, Third
et al., 2011, Stevens et al., 2011]. This template-based approach shifted as new methods
of dealing with natural language-like tasks emerged. Thus, research started focusing
on machine learning tools such as encoder-decoder strategies to construct short, single-
sentence summaries, and entity descriptions [Lebret et al., 2016, Kaffee et al., 2018,
Wiseman et al., 2018].

With the recent development of Transformer [Vaswani et al., 2017] based architectures
such as BERT [Devlin et al., 2018], research focused on the use of pretrained models.
These models are pretrained on vast amounts of unlabeled data and have been shown
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to improve model performance across different domains, e.g. in combination with im-
ages or knowledge graphs [Qi et al., 2020, Yao et al., 2019]. Having such a system in
place opens up the use for new applications that can generate human-readable knowl-
edge based on available graph structures or given input sequences. Combined with the
knowledge graph’s truthfulness, the generated sentences can represent real-world data
that is not limited to already explicitly documented knowledge.

Wikidata Labels Barack Obama spouse Michelle Obama occupation lawyer
Wikidata IDs Q76 P26 Q13133 P106 Q40348

Target Sentence Barack Obama is married to his wife Michelle who is working as
a lawyer.

Table 1.1: Example task of creating a natural language-like sentence on a given sequence
of Wikidata labels or IDs

In this thesis, we investigate how sentences can be generated from a knowledge graph se-
quence by using Transformer-based architectures and pretrained language models. More
precisely, we focus on the data-to-text generation for a given sequence of Wikidata enti-
ties and their connecting relations. This sequence does not necessarily need to be a graph
walk in Wikidata but can also be a sequence consisting of entities having no relations in
the graph. An example sequence of Wikidata entity labels with their associated IDs are
shown in Table 1.1. The corresponding target sentence is the objective our models are
trained on. We follow our goal by trying to understand the differences in the generation
between the training of a baseline model and the finetuning of a large pretrained lan-
guage model, namely BART [Lewis et al., 2019]. Additionally, we compare the natural
language-like sentence generation given two different input sequences: IDs and labels.
Entity labels and entity IDs either require specific model modifications to be made to
BART or the training of a whole new model. We hypothesize that pretrained language
models can outperform baseline models on our task and that using entity IDs as an input
source can leverage the results of a label-based approach.

Following our goals, we train different models depending on the given task and con-
duct exhaustive parameter searches over the models. Overall, we train more than 60
models based on six different architectures. Our training data comes from the pub-
licly available T-REx dataset containing 6.2 million Wikipedia sentences aligned with
the corresponding Wikidata entities and predicates. Processing the dataset into input
sequences associated with their target sentence leaves us with over 4 million sequence-
sentence pairs across many different Wikipedia domains.

Results show that the task of generating natural language-like sentences based on la-
bels can be achieved by baseline models, but are highly outperformed by a task-specific
finetuned BART model. Manual inspections indicate that the produced sentences are
indeed human-readable and, due to the training, very Wikipedia alike. Training the
models based on available Wikidata labels allows us to use already pretrained embed-
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ding layers. However, we notice that this embedding layer is hard to train from scratch
and becomes especially harder when training with Wikidata IDs, since the input dimen-
sion of such a training grows with each new entity.

The remainder of this Thesis presents the implemented and conducted experiments in
more detail. Chapter 2 describes the related work and how it adapted to new methods
and models over time. It is followed by more detailed background information and
explanations of model architectures in Chapter 3. The implemented models can be
found in Chapter 4 and the experimental setup of each model is described in Chapter 5.
In Chapter 6 the results are analyzed both quantitatively and qualitatively. Finally, we
conclude our work in Chapter 7 and make mentions of future work.

3
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Related Work

Generating natural language-like descriptions or single sentences given graph data is well
known, but methods have changed as architectures improved over the years. While ear-
lier approaches focused on implementing template-based architectures and neural models
trained from scratch, more recent approaches try to incorporate already learned knowl-
edge into their models. While most work focuses on selecting facts from a single entity
and generating natural language-like descriptions over these facts, this work concentrates
on the generation given an already specified sequence of entities.

2.1 Template-Based Approaches

Early template-based approaches can be domain-related implementations designed to
solve a specific problem. CORAL [Dale et al., 2003] can generate natural language-like
descriptions for navigational assistance, whereas SUMTIME-MOUSAM [Sripada et al.,
2003] is able to produce textual weather forecasts given a weather data time series.

Trying to close the gap for novice users to utilize the semantic webs knowledge GINO
(guided input natural language ontology) was introduced by [Bernstein and Kaufmann,
2006]. GINO provides users with an editor that allows the querying and editing of an
OWL ontology using natural language. That means that the tool can specify, complete,
and parse sentences to modify its ontology. To do so, a basic grammar consisting of
around 120 rules is extended with the underlying ontology’s structure and vocabulary.

NaturalOWL introduced by [Galanis and Androutsopoulos, 2007] is based on ILEX
[O’DONNELL et al., 2001] and M-PIRO [Androutsopoulos et al., 2001] and can gen-
erate natural language-like descriptions for single OWL classes in a restricted domain.
It further implements the generation in English and Greek and is based on a four-step
process: content selection, document planning, microplanning, and surface realization.
Whereas content selection chooses the most important facts about a target class, docu-
ment planning orders the selected facts to build the document structure. Microplanning
then creates sentences using templates, including slots used as placeholders. The slots
are filled with verb and noun phrases defined and provided by the OWL ontology or in
separate files. Sentences are finally aggregated into a single natural language-like text
using a domain-independent grammar. Additional words come from the domain-specific
vocabulary.
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Similar to NaturalOWL [Stevens et al., 2011], suggest a prototype that is able to gen-
erate textual definitions for OWL classes. Their approach aims to improve the fluency of
the output without the need for additional user input. Like NaturalOWL the prototype
collects axioms concerning one class, creates a sentence for each group, and merges these
sentences to a final paragraph. An additional conducted survey shows that while the
created paragraphs are acceptable, they cannot replace human written definitions.

[Third et al., 2011] provide a tool to verbalize OWL ontologies implemented in the
SWAT project. Compared to previous approaches, they do not generate a definition
for an OWL class but rather generate sentences for each class’s logical axiom. [Third
et al., 2011]. Again, the process follows a clear template: lexicon construction followed
by document structuring and verbalization using a fixed grammar. This fixed grammar
is then extended with the constructed lexicon. The evaluation suggests that tasks on the
verbalized ontology were preferred and are found to be easier to complete [Third et al.,
2011].

2.2 Neural Approaches

With the success of neural-language models such as Recurrent Neural Networks the
focus of generating natural language-like text based on structured data shifted towards
a neural approach. These neural approaches are comparable to the approach followed in
this thesis.

[Lebret et al., 2016] implement a neural-language model able to generate natural
language-like text based on Wikipedia infoboxes. To follow their goal, they additionally
introduce the WIKIBIO dataset consisting of over 700’000 Wikipedia articles. All articles
are in the biography domain and contain a Wikipedia infobox aligned with the Wikipedia
article’s first sentence. The first sentence is then predicted by a conditional neural-
language model using local and global conditioning mechanisms. These conditioning
mechanisms allow the model to use knowledge from the infoboxes. Additionally, they
use a copy mechanism passing words from the input infobox to the sentence without
having the specific word in the predefined fixed vocabulary. Similar to most neural-
language models both infoboxes and words are embedded and aggregated into a single
embedding. As in our work, results are analyzed using BLEU and ROUGE scores. Their
best model reaches a generation score of 34.7 BLEU and outperforms their baseline by
around 15 BLEU.

Comparable to [Lebret et al., 2016], [Chisholm et al., 2017] introduce a model to
generate one-sentence biographies. Instead of infoboxes the input is taken from slot-
value pairs of Wikidata and aligned with the corresponding Wikipedia article’s first
sentence. The focus relies on the 15 most occurring facts in the biography domain.
Furthermore, the authors train a recurrent neural network including GRUs and treat
the task similar to a machine translation task using a shared vocabulary. In addition, a
second objective is introduced. This objective aims to recreate the input facts, which has
the effect of generating text consisting of the input facts instead of more randomly added
facts Inspections show that the secondary objective indeed outperforms the simpler

6
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architecture by nearly 8 BLEU, having a total of 41 BLEU on the test set. Additional
inspections show that sentences generated by the model are preferred over Wikipedia
sentences by human judges.

[Vougiouklis et al., 2018] take the problem a step further and generate textual sum-
maries based on entity triples. The triples are taken from either Wikidata or DBpedia
and are aligned with the respective Wikipedia summary. Again, the focus lies on the
biography domain only. To limit the vocabulary size, the Wikipedia summaries are mod-
ified to replace rare or unknown tokens with special placeholders. Similarly, input triples
containing years are remodeled into multiple triples containing only the year or month.
During postprocessing, these placeholders are then replaced again with the original input
tokens. The model is based on an encoder-decoder architecture having a feed-forward
neural network on the encoder side and a recurrent neural network implementing either
an LSTM or GRU on the decoder site. Whereas the encoder transforms the input triples
into a concatenated output vector, the decoder is responsible for generating the textual
summary based on the encoder’s output. Their generation during testing uses a beam
search to optimize the final summaries. The model’s performance is measured utilizing a
combination of perplexity, BLEU, and ROUGE scores combined with human judgment.
The best model based on GRUs reaches a BLEU of 41.5 and is comparable to human
judgment.

Combining neural models with copy actions, [Kaffee et al., 2018] propose a model
based on the one introduced by [Vougiouklis et al., 2018]. Its architecture is again
composed of a feed-forward encoder and a recurrent neural network decoder based on
GRUs. However, the model implements the copy mechanism similar to [Lebret et al.,
2016]. During preprocessing, rare entities are replaced with property placeholders and
are again replaced after generation. The placeholder represents a property between the
subject of the sentence and the object, whereas the object is a rare entity and will be
replaced with its label. This mechanism again allows the authors to keep the vocabulary
smaller and focus on the most occurring tokens. They test their implementation of
multiple languages by aligning the first sentence of a Wikipedia article with its Wikidata
entry. Only triples where either the object or subject occur in the sentence are used
as input. Final generations show strong results across multiple domains in the used
languages and outperform the baseline models of the research.

Due to reasoning that the neural encoder-decoder models are hard to interpret and
challenging to control, [Wiseman et al., 2018] propose a neural hidden semi Markov
model decoder. The architecture is chosen to use attention mechanisms and LSTMs while
still being based on a hidden semi Markov model. They train the model using objects
resembling templates and on data from the WikiBio dataset by [Lebret et al., 2016] and
the E2E dataset by [Novikova et al., 2017]. Learned templates then again allows to
control the final generation and are easier to interpret than their neural counterparts.
Results are comparable to neural models but cannot reach state-of-the-art results. In the
WikiBio domain the proposed model reaches a score of 9 BLEU lower than the compared
best model.

7
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More recent work addresses shortcomings of neural text generation regarding the con-
tent selection and ordering of facts shown by [Wiseman et al., 2017]. [Puduppully et al.,
2019] introduce a model where the textual summary is conditioned on a learned content
plan. The approach follows a structure comparable to template-based methods in a
sense that it can be split into three steps: content selection, content planning, and text
generation. Content selection and planning build the model’s encoder site, outputting
the mentioned content plan as a vector. The decoder is then responsible for the text
generation given the content plan of the encoder. On a high-level, this architecture is
more interpretable and reduces the amount of repeated output [Puduppully et al., 2019].
Results on the ROTOWIRE dataset [Wiseman et al., 2017] show better performance on
generation quality and order of facts in the output text compared to previous methods
and baselines.

All work presented in this section can be compared to our work in a sense that it uses
linearized facts to predict single sentences or summaries in a natural language-like text.
Some work relies on infoboxes, whereas other work uses knowledge base triples as input.
However, all of the models shown have to select and order the content to verbalize the
input before text generation. Our approach does not need these first two steps. This
thesis’ models expect an already selected and ordered input and generate text-based on
this input. Instead, our model is not limited to a single domain such as the WikiBio
domain but is trained on all of Wikipedia.

2.3 Transfer Learning

The Transformer architecture [Vaswani et al., 2017], which only relies on attention mech-
anisms and dispenses recurrent layers, reached state-of-the-art results in machine trans-
lation tasks. Transferring learned data from one task to another is crucial for deep
learning tasks that lack annotated data. Multiple models trained on huge amounts of
data improving the natural language understanding and generation exist throughout
literature.

[Radford et al., 2018] improve the transfer learning from a word-level domain to a
domain where supervised finetuning can be used for downstream tasks. Their generative
pretrained model (GPT) is a unidirectional (left-to-right) Transformer based architecture
trained on massive amounts of unlabeled data. The learned parameters of the pretrained
model resemble a broad language understanding. Task-specific input adaptions allow the
finetuning of the pretrained parameters on downstream tasks resulting in state-of-the-art
results in 9 out of 12 tasks.

Arguing that the limitation of language models such as GPT is their unidirectionality,
[Devlin et al., 2018] introduce BERT (Bidirectional Encoder Representations from Trans-
formers). Using a masked language model (similar to the Cloze task), the pretrained
BERT model can embed the left and right context together by predicting masked tokens
during pretraining. BERTs architecture allows the finetuning of multiple downstream
tasks with minimal architectural changes. These downstream tasks can include question
answering or single sentence prediction and reach state-of-the-art results on eleven NLP

8
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tasks. Yet it cannot easily be used for natural language generation.
To deal with the lack of BERT’s effectiveness for natural language generation tasks,

[Lewis et al., 2019] present BART in (2019). Compared to BERT’s masked language
model approach, BART’s pretraining is composed of a text noising stage and a recon-
struction stage. During the noising stage, the input to BART is mixed using different
noising functions. BART then learns the reconstruction of the noised input. They
combine the auto-regression of GPT with the bidirectionality of BERT and show that
BARTs performance can outmatch previous models in natural language understanding
tasks. But especially in natural language generation tasks.

Most recently and similar to our work, [Ribeiro et al., 2020] explore the knowledge-
graph-to-text generation using pretrained language models. The authors compare the
generation of a previously finetuned BART and T5 [Raffel et al., 2019] model on the
WebNLG dataset. Their work shows that even though the graph structure of the input
is not needed directly, the pretrained model and its contained knowledge outperform
specifically trained graph-to-text models. Since the knowledge-graph-to-text task is not
the same as our task, they prepare the dataset differently by prepending special tokens
to each entity and relation of the input sequence. Furthermore, they are limited to using
the WebNLG dataset labels and thus focus only on the generation from labels to text,
whereas our work also investigates the learning based on entity IDs.

9
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Background

This chapter describes some essential background aspects used in this thesis in more
detail. First, we state the formal definition of a knowledge graph and give an introduction
to Wikidata. We further describe the Transformer architecture and its training method
in depth. Based upon the Transformer, we illustrate BERT as well as BART, both being
pretrained language models.

3.1 Knowledge Graphs

The definition of a knowledge graph differs across research and is often confused with
knowledge bases. [Ehrlinger and Wöß, 2016] compare different definitions of knowledge
graphs and related architectures. They define a knowledge graph as follows:

A knowledge graph acquires and integrates information into an ontology and
applies a reasoner to derive new knowledge.

This definition requires two concepts to be explained in more detail. (1) A knowledge
base (e.g. ontology) being a pure semantic storage incorporating different kinds of in-
formation such as rules or facts about its world. In addition, a knowledge base can also
hold instances separating knowledge bases from being database schemes [Ehrlinger and
Wöß, 2016]. (2) The addition of a reasoner that can automatically collect, extract, and
integrate new knowledge into an already existing knowledge graph. Thus, a reasoner can
be seen as a tool or software that allows the computer to conduct automated analysis
using a set of inference rules [Mishra and Kumar, 2011].

Additionally, the concept of having linked data modeled in a subject-predicate-object
triple can be seen across different implementations and definitions. In such a triple, the
subject and object refer to real-world concepts. The predicate describes the relationship
between these two concepts.

One of the most famous knowledge graphs is Google’s Knowledge Graph introduced
in 2012. It is built upon freebase and further tuned on users’ search queries containing
more than 500 million objects and facts connecting these objects [Singhal, 2012]. This
knowledge enhances Google’s search engine from matching queries to matching real-
world objects like people or electronic devices.
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This thesis focuses on the use of Wikidata1. Wikidata, by its definition, is a free
and open knowledge base containing around 89 million entities and more than 1 billion
statements about these entities2. Like its sister project Wikipedia, Wikidata is edited
and maintained collaboratively but is also extended by many bots. Due to these auto-
matic extensions and its available reasoner3 Wikidata can be seen as more than just a
knowledge base. By the previously given definition, Wikidata can be interpreted as a
knowledge graph incorporating a huge amount of real-world knowledge.

In Wikidata the subject-predicate-object triple (s, p, o) is a combination of two entities
that are linked via a specific predicate. The subject, as well as the object, are elements
of all entities included in the knowledge graph. In the case of Wikidata, these entities
resemble real-world instances like persons or buildings. Additionally, the object of the
triple can become a single value (e.g. a date or proper names) instead of an entity. The
predicate connecting these entities is also called relation or property and is an element
of the property set. Linking entities over predicates results in a linked data format,
displayed as a graph similar to Figure 3.1. In the graph, each entity is represented as a
node, including its label (the title of the entity) and its QID (the unique ID of a Wikidata
entity, starting with ”Q”). Predicates are visualized as edges between the entities and
include their label and property ID. Some entities can also contain a so-called qualifier
(e.g. life expectancy of the United States of America) contextualizing the item.

Figure 3.1: Extraction of a sample knowledge graph from Wikidata (not complete)

1https:// www.wikidata.org/ wiki/ Wikidata:Main Page
2https:// wikidata-todo.toolforge.org/ stats.php
3https:// reasonator.toolforge.org/
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3.2 Transformer

The Transformer was first introduced by [Vaswani et al., 2017] and replaced traditional
sequence-to-sequence models’ recurrence by its self-attention mechanism. Due to this
replacement, machine translation improved not only in quality, but also in training
time due to being highly parallelizable [Vaswani et al., 2017]. Similar to other natural
language models, the Transformer is an encoder-decoder based architecture. Each the
encoder and decoder consist of 6 layers having the same composition inside all layers.
Whereas one encoder layer consists of two sub-layers, the decoder consists of three. This
can be seen in Figure 3.2.

Figure 3.2: Basic Transformer architecture as introduced by [Vaswani et al., 2017]

Encoder To deal with the textual input sequence, the embedding layer learns to trans-
form each word (or sub-word) into a vector of size d. This learned embedding is then
added to a positional embedding of the same dimension helping the model compen-
sate for the lack of recursion. Like the word embedding, the positional embedding can
be learned but are fixed to a combination of sine and cosine functions in the original
implementation.

Once the input embedding and positional embedding are summed up, they are fed to
the multi-head attention layer of the encoder’s first layer. The calculated self-attention

13
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can be seen as how the model tries to encode the relevance of surrounding words based on
the currently processed word [Alammar, 2018]. Self-attention or originally Scaled Dot-
Product Attention can be fully calculated with the use of optimized matrix multiplication
code and is defined as [Vaswani et al., 2017]:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.1)

Where Q, K, and V are the query, key, and value matrices and are stacks of query,
key, and value vectors respectively. dk represents the dimensions of the query and key
vectors. Thus, the self-attention is a weighted sum of the value vectors. To calculate
Q, K, and V , the summed input embeddings are each multiplied with their own weight
matrix WQ ∈ Rd×dk , WK ∈ Rd×dk , and W V ∈ Rd×dv .

The Transformer makes use of multi-head attention combining h different attention
heads. Each head initializes its weight matrix differently so that the model is able to
incorporate ”different representation subspaces at different positions” [Vaswani et al.,
2017]. During computation, attention is calculated for each head and the resulting
matrices are concatenated. The concatenated matrix is multiplied with an additional
weight matrix WO ∈ Rhd×dk .

Each sub-layer of the encoder implements a residual connection so that the input
and output of each sub-layer can be normalized using layer normalization [Ba et al.,
2016]. Next to the multi-head attention layer, an encoder layer implements a 2-layer,
ReLU activated, and fully connected feed-forward network. This transformation can
be applied to each input position in parallel but differs across multiple layers. The
normalized output of one encoder layer is then used as the input for the next layer.
Finally, the last encoder layer’s output gets transformed into its key and value matrices
used by the multi-head attention sub-layer of each decoder layer.

Decoder Like the encoder, the decoder uses an embedding and positional encoding
layer to embed its input sequence. If a shared vocabulary is used, weights of the encoder
and decoder embedding layer are shared as well. However, the input sequence needs
to be shifted one position to the right to prevent the decoder from predicting its input
tokens one by one. Compared to the encoder’s multi-head attention layer, the decoder
implements a masked multi-head attention layer, followed by a multi-head attention
layer. Masked multi-head attention works comparable to multi-head attention. Since
the decoder is only allowed to look at positions in front of its current position, right-ward
content is masked. The mask is applied before the softmax calculation by setting the
right-ward input to −∞. The decoder’s multi-head attention layer receives its key and
value matrices from the encoder and its query matrix from its own attention layer. This
allows the decoder to use all information from the encoded input sequence of the encoder
as well as the left-ward input of the decoder to reason about the output.

Finally, the linear layer of the decoder transforms the output of the decoder’s last
stacked layer to a logits layer using the learned weights of the embedding layer. This
results in a vector of the same size as the input vocabulary containing each word’s

14
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prediction scores. These scores are turned into probabilities using a softmax layer so
that all scores sum to one.

By virtue of to the Transformer’s architecture, training can be completed in parallel.
Originally the Transformer uses the Adam optimizer [Kingma and Ba, 2014] with an
increasing learning rate before the warmup phase and a decreasing learning rate after.
The loss is calculated using cross-entropy over the true and the predicted probability
distributions.

3.3 Transfer Learning

BERT BERT (Bidirectional Encoder Representations from Transformers) is a lan-
guage representation model that allows finetuning on multiple NLP tasks thanks to
intensive pretraining. It improves upon the restrictions of unidirectionality of previous
models like GPT by training deep bidirectional representations. The architecture is
based on a stack of multiple Transformer Encoder layers and is further defined by the
number of attention heads as well as the number of hidden dimensions. In its large
implementation (24 encoder layers, 16 attention heads, 1024 hidden dimensions), BERT
reaches 340 million parameters in total. The large model was pretrained over four days
on 16 Cloud TPUs [Devlin et al., 2018]. The full pretraining architecture can be seen in
Figure 3.3.

Figure 3.3: BERTs architecture including the input transformations and pretraining
tasks [Devlin et al., 2018]
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BERT’s pretraining input sequence can either be a single sentence or a combination
of two sentences. A [CLS] token in the beginning and [SEP] tokens at the end of the
sequence are added to the original input. Same as in the original Transformer, the input
sequence is then embedded using token and positional embeddings (T and P in Figure
3.3). Additionally, a learned sentence embedding (S in Figure 3.3) is added, which only
differs between tokens of different sentences. The final embedding of each input token,
including special tokens, is then fed into the first layer of BERT’s encoder.

BERT is pretrained in two unsupervised tasks: Masked Language Model (MLM)
and Next Sentence Prediction (NSP). In the first task, 15% of all input tokens of each
sequence are replaced with the special [MASK] token. Only masking the randomly
chosen token would lead to lower performance of the finetuned model, since the [MASK]
token does not appear during finetuning. Thus, the chosen token is only replaced by the
[MASK] token in 80% of all cases. In 10% it is replaced by another randomly chosen
token and not replaced at all in the remaining 10%. The last layer’s final output is then
used to calculate the cross-entropy loss for the chosen tokens. Masking individual tokens
essentially enables BERT to do a bidirectional pretraining since the masked tokens are
predicted using the left and right context.

In the Next Sentence Prediction task, BERT tries to learn whether a sentence is indeed
followed by another sentence and therefore can learn the relationship between the two
sentences. To follow the task, BERT’s input consists of 50% true sentence pairs (sentence
2 actually follows sentence 1) and 50% false sentence pairs. The [CLS] token’s output is
then again used to calculate the next sentence probability using a simple classification
layer. Different from the original Transformer, GeLU activation is used over the ReLU
activation. Both pretraining tasks are trained together so that the summed loss over
both tasks is minimized.

Thanks to both pretraining tasks, finetuning can be done easily and inexpensive for
different tasks. Finetuning tasks can include question answering, sentence pair clas-
sification, or single sentence tagging tasks. Depending on the task additional output
layers might be required. Even though pretraining is very time- and energy-consuming,
finetuning can be done in several hours using conventional GPUs [Devlin et al., 2018].

BART BART can be seen as a mixture of the original Transformer and BERT. Specif-
ically, it is an encoder-decoder model like the Transformer, following pretraining strate-
gies that slightly differ from those of BERT. These two aspects allow a task-specific
finetuning, especially effective for text generation tasks like data-to-text generation.

BART’s pretraining follows BERT’s pretraining by corrupting the input text and
learning a sequence-to-sequence model by reconstructing the original input. However,
corrupting the input text is not limited to token masking alone, but can be any arbi-
trary corruption function. The paper compares the token masking task to four other
corruption functions: token deletion, text infilling, sentence permutation, and document
rotation. Results suggest that token masking is crucial and can be further enhanced by
token deletion. Token deletion can significantly improve the performance of BART on
generation tasks.

16
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Apart from standard text-generation tasks, BART can be extended to perform ma-
chine translation using the same pretrained model. To do so, BART implements a
randomly initialized encoder which replaces BART’s original input layer. The whole
model is therefore able to use different input and output vocabularies and tries to learn
the mapping between the two languages in a two-step process. First, only the new en-
coder is trained together with BART’s positional encoding as well as the attention layer
of the first encoder layer [Lewis et al., 2019]. Second, the complete model is trained
end-to-end, further improving the performance of the translation. Both steps try to
minimize the cross-entropy loss like the standard Transformer does.

Generation During generation, both the Transformer and BART need to generate
tokens one after another as done by traditional sequence-to-sequence models. The en-
coder works the same as during training and encodes the whole input sequence as one.
It passes the transformed key and value matrices to the decoder. Meanwhile, the de-
coder only receives a single embedded start token and the encoder’s output. Based on
that, it has to generate the output sequence iteratively, which means that the predicted
output token is used as an additional input to reason on and predict the next token.
More tokens are predicted until either an end of sentence token is predicted, or the max
sentence length is reached.

Two methods of decoding are used: greedy decoding and beam search. Greedy de-
coding is taking the token with the highest predicted probability from the probability
distribution. This token is then appended to the sequence of already predicted tokens
and can be used to further reason on. Beam search allows to hold on to multiple highly
probable tokens at the same time step. The most probable sequence is then chosen over
the other hypotheses at each time step, allowing to find whole sequences with higher
probabilities. The number of held-on tokens can be chosen freely and can be used as a
parameter during the generation.

17
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Methods

Related work focuses on producing abstracts or single sentences based on multiple knowl-
edge base triples. Given a specific input, the models have to choose individual triples
and include them into a natural language-like text. In this work, we want to generate
natural language-like sentences based on an already given sequence of knowledge graph
entities and predicates taken from Wikidata. More specifically, we want to use already
trained language models incorporating knowledge from many different domains. We
further want to analyze whether the training and generation based on entity IDs or the
corresponding labels differ. To do so, we need to implement and train different models
to compare their generation on unseen data. The models are based on two already ex-
isting ones: the Transformer and BART. We use the Transformer as a baseline model
and for the model translating IDs to labels. BART is finetuned specifically to our task.
Altogether, we build and train six different models, some of which share their input and
expected output sequence type. Others are trained to fulfill a certain sub-task incorpo-
rated in larger models. An overview of the different models and their input and outputs
are shown in Table 4.1.

This chapter will explain the architectures of the models used, what input they require,
and the output expected to be generated. The models are all implemented in Python
and can be found in the project’s repository4.

Model Input Output

Baseline Entity/Predicate IDs Natural Sentence
Finetuned BART Entity/Predicate Labels Natural Sentence
BART for MT Entity/Predicate IDs Natural Sentence
IDs to Context Labels Entity/Predicate IDs Entity/Predicate Labels
Translation-BART Entity/Predicate IDs Natural Sentence
Translation-Middle-BART Entity/Predicate IDs Natural Sentence

Table 4.1: Summary of models with the input and expected output sequences

4https:// gitlab.ifi.uzh.ch/ baumgartner/ kg-text-generation

https://gitlab.ifi.uzh.ch/baumgartner/kg-text-generation
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Baseline Model We implement a baseline model because, to the best of our knowl-
edge, there is no previous work on the same task to which we could compare our models.
To generate sentences based on Wikidata entities, we use a machine translation model
with two different embedding vocabularies. Thus, our baseline model follows the imple-
mentation of the original Transformer by [Vaswani et al., 2017] described in Section 3.2.
We adapt the original implementation to be closer to the implementation of BERT by
replacing fixed positional embeddings with learned ones. Having two different vocabu-
lary embeddings allows us to train the generation of a target sentence based on the given
entities end-to-end.

In addition to the baseline model trained on a sequence of Wikidata entity IDs, we
train a model on a sequence of the corresponding entity labels. Both models have the
exact same specifications during training. However, the model trained on labels uses
the same input vocabulary for both the encoder and decoder. This model will help to
understand the differences that finetuning a large pretrained model can make.

Figure 4.1: Baseline model built upon a basic Transformer architecture. The input is
based on a sequence of Wikidata entity and predicate IDs. The target is the
natural language-like sentence corresponding to the input.

BART Since already pretrained BART models exist, we can make use of one and
finetune it for our task. A pretrained BART model, together with its Python imple-
mentation needed for finetuning, is made available by the Transformers5 library. This
pretrained BART model has 12 layers each on the encoder and decoder side, implement-
ing a hidden size of 1024, resulting in over 400 million parameters. It is pretrained on a
combination of corpora, including the CC-NEWS, BOOKCORPUS, OPENWEBTEXT,
and STORIES dataset summing up to over 160GB of pretraining data [Liu et al., 2019].
Overall, the model was pretrained over a period of 500’000 steps having a batch size of
8000.

To use this pretrained model together with its embedding layer, we need to adopt
the same tokenization strategy followed during pretraining. The tokenizer uses the byte
pair encoding of the GPT-2 model [Radford et al., 2019], allowing to have a reduced
vocabulary size without having unknown tokens. Essentially, this results in a splitting
of infrequent words into their most frequent sub-words. Using that specific tokenization,
we end up with a vocabulary of size 50’265, which is also the first embedding layer’s
input size.

5https:// huggingface.co/ transformers/ model doc/ bart.html
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The architectural choice of the pretrained model limits us to use an input that can be
understood by BART. This would not be the case if we used a sequence of entity IDs.
Tokenizing a string of these IDs would result in byte pair encodings consisting of single
letters and numbers. The numbers itself would again split up into the most frequent
numbers of the dataset. Due to this split-up, the initial ID representation and thus the
meaning of an ID itself gets lost. For example the IDs Q30 and Q3030 get tokenized into
[”Q”, ”30”] and [”Q”, ”30”, ”30”]. After the tokenization, the second ID would receive
certain information the first ID contains too, even though the two IDs have nothing in
common. Therefore, we cannot train BART directly using entity IDs.

We decide to finetune BART using the labels connected to Wikidata entity IDs. These
labels do not face the same problem and can directly be interpreted by the tokenizer and
BART’s embedding layer. Each tokenized input sentence additionally receives a start
and end of sentence token by the encoder. The target sentence does not get an end of
sentence token to train the model on predicting the end of a sentence. Sentences can be
trained in batches using an additional padding token in order to have the same token
length for all the sentences of a single batch. The architecture together with a single
tokenized sample sentence can be seen in Figure 4.2

Figure 4.2: BARTs finetuning model using Wikidata entity and predicate labels as in-
put to the pretrained encoder. The target is the corresponding Wikipedia
sentence.

BART for Machine Translation Since the original BART model does not allow us
to use a different embedding layer than the one implemented by the pretrained model,
it cannot be finetuned on Wikidata IDs. In order to do so and still use a pretrained
model, we can use the approach of treating the problem as a machine translation task.
The original paper showed this approach, and we described it briefly in Section 3.3.

We follow that implementation by replacing the original BART encoder’s embedding
layer with a new BART encoder. This new BART encoder could have any dimensions
regarding the number of encoding layers or the hidden dimension size. But to keep
things simple between the two encoders, we fix the hidden dimension size to 1024, which
is also the input embedding size of the original BART model. Thus, there will be
no transformation needed between the two encoders. Each token embedding of the first
encoder can simply be passed on to the second already pretrained and finetuned encoder.
This pretrained and finetuned encoder comes from the already finetuned BART model
that matches a sequence of Wikidata labels to natural language-like sentences.
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The new encoder implements an embedding layer only dependent on the input vocab-
ulary. It is then trained to learn the mapping between the newly introduced vocabulary
and the original vocabulary in the described two-step process. This input vocabulary
can consist of Wikidata IDs, and we can compare the generation directly to our baseline
model having the same input and output sequences.

Figure 4.3: BART model with an additional encoder able to perform machine translation
tasks

ID-Label Translation We additionally focus on the task of translating entity IDs to
their surface form. Learning such a mapping can be seen as an important intermediate
step to our final target. If labels can be translated into their surface form depending on
their surroundings, it will make the task of generating a sentence easier. Additionally,
a pretrained model like BART could be used upon the output of such a model without
training a new encoder.

To learn these contextualized mappings, we make use of the Transformer. Compared
to our baseline, the model’s goal is not to generate a sentence but only to learn contextu-
alized labels for the Wikidata entity IDs. Thus, the input sequences are again Wikidata
IDs, but the target output sequences are the entities’ surface forms and predicates. Since
a single ID can consist of multiple surface tokens, we need a sequence-to-sequence model
able to reason on the input and predict a sequence, independent of the input length.

This translation model’s architecture and training follow the implementation of our
baseline model. Dimensions and number of layers on both the encoding and decoding
sides can be varied.

Translation Prior to BART Having a functional translation from IDs to surface
forms allows the generation of a label-like sequence. Thus, we can use a translation
model followed by a pretrained and already finetuned BART model built into a sequence
of two models. BART has to be finetuned on the sentence generation task since available
models are not trained for it. This allows again the comparison to our baseline model,
which is trained directly from entity IDs to sentences.

Figure 4.4 shows this sequential architecture. The two models need to be trained
independently and are only connected during generation. To make the models compati-
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Figure 4.4: Translation model followed by BART used for generation only

ble, we need to prepend an additional start of sentence token to the translation output.
Other than that, both models generate the sentences as they would on their own.

Translation-Middle-BART Instead of having two independent models after each
other, it is possible to connect them directly. We do so by training a middle layer between
the translation and the BART model. This middle layer transforms the translation
models’ output embeddings into the input embeddings of BART’s encoder. Thus, it
replaces the output layer of the translation Transformer and the embedding layer of
BART. The full architecture can be seen in Figure 4.5.

The middle layer is a simple 2-layer feed-forward neural network similar to the one
inside a single encoder layer. It implements the GeLU activation function. In the case
where the output embedding dimension of the translation model does not fit the input
dimension of BART (1024), we first up- or down-scale the output to fit the required
input dimension.

Training the middle layer requires the input and target sequence of the translation
training. This is due to the Transformer’s decoder working with a masked target sequence
to produce the output. Otherwise, the training could not be done in parallel and would
require a prediction of output embeddings based on previous outputs. All parameters
except the ones of the middle layer are kept fixed during training.

During generation however the translation model first generates its output recursively.
The output embeddings are then fed through the middle layer and the BART encoder.
BART’s decoder works as usual based on the encoder’s produced output.
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Figure 4.5: Translation model followed by BART. Combines the output of the trans-
lations embedding layer with BARTs input layer via a feed forward neural
network (middle layer).
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Setup

This chapter describes the used dataset and how we processed it for our task in two
steps. In the Training Setup section, we state how we train our presented models of
Chapter 4 and what parameters we experiment with. At the end of this chapter, we
state our evaluation methods.

5.1 Dataset

To train our models, we require sequences of knowledge graph entities aligned with
annotated sentences. Several datasets in this direction exist, such as the WikiBio [Lebret
et al., 2016], DAWT (densely annotated Wikipedia texts) [Spasojevic et al., 2017], and
T-REx [Elsahar et al., 2019] dataset. However, the WikiBio dataset does not align single
sentences with triples in the specific order of occurrence, and the DAWT dataset does
not capture the relations between Wikidata items in a sentence. Thus, we decided to
use the T-REx dataset for this thesis.

The T-REx dataset6 is made available under a Creative Commons Attribution-ShareAlike
4.0 International License. It aligns 3.09 million Wikipedia abstracts with 11 million Wiki-
data triples containing over 600 different Wikidata predicates. This results in a total of
6.02 million aligned sentences. Though, more critical for our work are the Wikidata en-
tities and predicates annotated in the sentences directly. These annotations can directly
be used to train the models relevant to our research. The Python scripts able to parse
the T-REx dataset are made available in this thesis repository7.

We note that within this dataset not all Wikidata entities and predicate are annotated
perfectly. Some sentences miss annotations or entities are wrongly annotated. This
irregularity in the training data can make the model training harder since wrong facts
are incorporated.

Preprocessing We process the data and adapt the format to our needs by parsing
the input. Each page of the dataset is first loaded into our data model, allowing it to
be handled in an object-oriented manner. Once the page is loaded, it gets propagated

6https:// hadyelsahar.github.io/ t-rex/
7https:// gitlab.ifi.uzh.ch/ baumgartner/ kg-text-generation

https://hadyelsahar.github.io/t-rex/
https://gitlab.ifi.uzh.ch/baumgartner/kg-text-generation
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Original Sentence Star Science Fiction Stories No.1 is the first book in the anthol-
ogy series, Star Science Fiction Stories, edited by Frederik Pohl.

Entity/Predicate <Q7600878, Star Science Fiction Stories No.1><Q23653, an-
thology series><Q7600878, Star Science Fiction Stories><P98,
edited by><Q312641, Frederik Pohl>

Output Sentence Star Science Fiction Stories No.1 is the first book in the anthol-
ogy series, Star Science Fiction Stories, edited by Frederik Pohl.

Original Sentence It was first published in 1953 by Ballantine Books, without nu-
meration, and was reprinted in 1972 as ”No. 1”.

Entity/Predicate <Q7600878, Star Science Fiction Stories No.1><P1433, pub-
lished in><XMLSchema#dateTime, 1953><Q2881141, Ballan-
tine Books><XMLSchema#dateTime, 1972>

Output Sentence Star Science Fiction Stories No.1 was first published in 1953 by
Ballantine Books , without numeration , and was reprinted in
1972 as ”No. 1”.

Table 5.1: Two sample Wikipedia sentences followed by each other. Each sentence is
aligned with its Wikidata entities annotated in the T-REx dataset. The final
output sentence will be the target sentence to our models.

through a spaCy8 pipeline. Tokenization, sentence segmentation, and named entities
are all provided by the T-REx dataset and are kept as they are. However, spaCy
allows the filtering and retokenization of named entities. This is necessary since the
dataset can contain more than one detected Wikidata entity over the same token span.
For example, the token span ”canton of Zurich” might be annotated multiple times
containing the entities (<Q11943, canton of Zurich>, <Q72, Zurich>). If this is the
case, we only keep the annotated Wikidata entity with the longer token span in the source
text. Additionally, some entities are annotated over sentence boundaries requiring the
deletion of these annotated entities.

Paragraphs of Wikipedia tend to talk about the same subject. This subject might be
mentioned in its full form only once at the beginning of the first sentence and might
be referred to via pronouns in the rest of the paragraph. The T-REx dataset algorithm
annotates these references and marks them accordingly. If such a reference is found, we
replace it with the title of the Wikipedia article. An example can be seen in the second
sentence of Table 5.1. This will make the input to our models more concrete as pronouns
will be harder to predict based on a given Wikidata entity.

The annotated Wikidata entities with their aligned text are written to a new set of
files that will be used for postprocessing. Sample input and output sentences of this first
processing step can be seen in Table 5.1.

8https:// spacy.io

26

https://spacy.io


5.1. DATASET 27

0 25 50 75 100 125 150 175 200
Occurence

10
3

10
4

10
5

10
6

En
tit

y 
C

ou
nt

 (l
og

)

Figure 5.1: Histogram showing how many entities occur in how many sentences

Postprocessing After having the alignment fixed, we filter the dataset to contain only
the most occurring entities and most densely annotated sentences. The resulting dataset
contains nearly 2.5 million different Wikidata entities. The histogram of how many
entities occur how often in the dataset can be seen in Figure 5.1. It shows the entities that
occur less than 200 times, counting each occurrence in all sentences. Entities appearing
more often are not displayed. We observe that many of the dataset entities are rare, and
more than half of the entities occur less than three times over the whole dataset. The
models that learn based on entity IDs cannot deal with these underpopulated entities,
as a significant proportion of unknown labels in an input sequence can lead to poor
generations [Luong et al., 2014]. As shown in Chapter 2, other approaches use the
copy mechanism that cannot be used on a sequence of input IDs. Therefore, we decide
on discarding all entities that occur less than 50 times across the dataset, leaving a
vocabulary size of 99’142 entities. This vocabulary is only used for the models requiring
an ID input sequence. Models based on a sequence of entity labels can use all entities.
However, for comparison, we make sure that both model types receive the same amount
of information, and only labels of the in-vocabulary-words are used as input.

On the other hand, some entities and especially predicates occur more often than
others. For example, the entity <Q30, United States of America> occurs more than
700’000 times over the whole dataset. To deal with those entities, we allow the models
to subsample from the input words, following the approach of [Mikolov et al., 2013].
This subsampling removes entities from the input sentence given some threshold t and
the number of occurrences of the entity in the dataset f . The probability that a word is

removed from the input sequence is then defined by p = 1−
√

t
f . We choose a threshold

t of 1000 to keep the importance of the most frequent entities.

We further remove sentences having less than two entities linked to it or having less
than five tokens overall. Sentences having too few entities compared to their length
are removed as well. More specifically, if the ratio of linked tokens is smaller than
0.35, the sentence is removed from the dataset. This results in a dataset consisting of
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4.5 million densely annotated sentences that can be used for all our models (ID and
label-based sequences). For later evaluation, we split the remaining data into a train
(80%), validation (10%), and test (10%) set. This allows checking the models’ ability to
generalize on unseen data.

The final aligned sequences are either label- or ID-based and will be tokenized dif-
ferently by the models as stated in Chapter 4. Whereas the ID-based models use sim-
ple space tokenization to tokenize the ID input sequence, the models based on labels
use a byte pair encoding. Additionally, all dates are replaced with the special token
<XMLSchema#dateTime>. The replacement is done for all dates regardless of their
format. This is done to keep the input between the two approaches comparable and not
rely on copy mechanisms.

5.2 Training Setup

We train all our models defined in Section 4 on their specific tasks using the required
data. All models are trained in batches and are entirely parallelizable during training.
In this section, we again go through all of our models, defining their training procedures,
and state the adapted hyper-parameters of each model. Overall we train 60 different
model configurations based on our six trainable model architectures. All different model
configurations can be found in A.

Every model configuration was trained or finetuned on the same machine using the
same proportion of available hardware9. The memory limitation of the GPU also re-
strains some parameter configurations (e.g. batch size or hidden dimensions) of our
models.

Baseline Since one of the baseline models uses Wikidata IDs as input, we have different
embedding layers on the encoder and decoder side. Whereas the encoder embedding has
a vocabulary size of 99’142, the decoder embedding layer has a size of 50’265. The
baseline model trained on Wikidata labels shares its vocabulary for both the encoder
and decoder embedding layer and has a size of 50’265. Both the encoder and decoder
implement a hidden dimension of 1024 and have 8 attention heads.

The parameter weights are initialized using a Xavier initialization [Glorot and Bengio,
2010]. We train the model with the Adam optimizer and use an Adam epsilon of 1e-8.
Training is conducted over 10 epochs using a batch size of 64. The training data is not
downsampled, leaving all IDs in the input sequence without removing the most frequent
ones. We do not make use of the full dataset due to training time limitations. Thus, we
train our model on 10% of the full dataset. No warmup phase is implemented.

For the training of the baseline model, we only change the learning rate. We use fixed
learning rates of 1e-3, 3e-4, and 1e-5 to train the configurations of our baseline model.

9GeForce GTX Titan X, 12 GB memory
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BART We finetune the pretrained BART model on Wikidata labels using the same
encoder and decoder embedding layers as the pretrained model. Both embedding layers
share the same vocabulary of size 50’265. The hidden dimension of 1024 is kept during
finetuning and cannot be changed.

Next to the standard Adam optimizer, we finetune the model with the Adam fixed
weight decay regularization as implemented by the Transformers library and introduced
by [Loshchilov and Hutter, 2017]. The Adam epsilon of 1e-8 is kept fixed over the
different configurations. Finetuning is conducted over 10 epochs using a batch size
of 16. We change the amount of training data using only percentages of the available
sentences. This is done to understand the finetuning process and the needed data better.
Together with dataset downscaling, we use different learning rates.

Table 5.2 shows the parameters we are alternating and their values. Using every
combination of the parameters would result into 32 finetuned BART configurations,
which would be time and energy consuming. Thus, we only train on certain combinations
of these parameters, always building up on already discovered knowledge. For example,
we do not train a new model configuration on more data together with a higher learning
rate, if a model configuration using less data having the same learning rate already
performed poorly.

Dataset Size

1%
10%
20%
50%

Learning Rate

1e-4
3e-5
1e-5
5e-6

Optimizer

Adam
AdamW

Table 5.2: Parameters used to finetune BART on labels

Additionally, we train a BART model based on the surface forms of the labels in
the text. Meaning that the input sequence contains the entities as they occur in the
sentence. This model only needs to fill in blanks between the entities and does not have
to change the entities’ appearance in the text. We hypothesize that such a training will
create an upper bound performance no other model can reach.

BART for Machine Translation This addition to the BART model implements a
new encoder which needs additional training on mapping Wikidata IDs to labels. As
our baseline, this model uses an encoder embedding layer of size 99’142 and a decoder
embedding layer of size 50’265. Even though the new encoder could have any hidden
dimension size, we keep it at 1024. We vary the number of encoder layers of the new
encoder.

Before training, we load the weights of our best finetuned BART model so that the
model is already able to perform the sentence generation task. The new encoder weights
are then initialized using the Xavier initialization. We train the model with the Adam
optimizer and use an Adam epsilon of 1e-8. Training is conducted over 10 epochs using
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a batch size of 16. The model configurations are trained on different dataset sizes.
Additionally, we experiment with sentences where most frequent IDs were downsampled.
This leads to the set of parameters listed in Table 5.3.

Dataset Size

1%
30%
100%

Learning Rate

1e-3
3e-4
1e-4
5e-5
1e-5

Downsampled IDs

TRUE
FALSE

Encoder Layers

3
6

Table 5.3: Parameters used to train BART for machine translation

ID-Label Translation To translate IDs to labels based on their context, we train
a Transformer using several adjustable parameters. As with our baseline, we fix the
number of encoder and decoder layers to 3. However, we use the size of hidden dimensions
as a parameter for this model. The encoder’s input vocabulary has a size of 50’265, and
the decoder uses a vocabulary of the size 99’142.

The Adam optimizer is used for training with an Adam epsilon of 1e-8. Training is
performed over 10 epochs and using a batch size of 64. We adjust the learning rate
and size of the dataset across this model’s configuration. The first results suggested
that downsampling frequent Wikidata IDs is needed for this model to work so that all
experiments use this approach. This leads to the parameters under investigation shown
in Table 5.4

Dataset Size

10%
100%

Learning Rate

1e-3
5e-4
1e-4

Hidden Dimensions

64
128
256
1024

Table 5.4: Parameters used to train translation from IDs to labels

Translation to BART using a Middle Layer We use our previously trained trans-
lation and finetuned BART models and combine them via a middle layer. This middle
layer itself consists out of two feed-forward layers. It is trained using the Adam optimizer
with an Adam epsilon of 1e-8, a batch size of 64, and a hidden dimension size of either
1024 or 512. We also adapt the learning rate to be 1e-3, 3e-4, and 1e-5 respectively.
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5.3 Evaluation

We perform a qualitative and quantitative evaluation. A qualitative evaluation focuses
on human evaluation and is not done automatically. The quantitative evaluation can be
done automatically and compares the generated sentence to the actual target sentence
using different scoring functions.

We follow previous work and make use of the BLEU [Papineni et al., 2002] and ROUGE
[Lin, 2004] scores. BLEU was originally implemented to compare the output of a machine
translation model to given reference sentences. Each output sentence is scored with
respect to its references between 0 and 100, where 100 would be an exact match between
the predicted and actual target sentences. In its essence, it calculates the overlap of words
between prediction and target sentences and can be seen as a precision measurement.
However, the BLEU score calculation can be parameterized and thus can differ between
implementations, as shown by [Post, 2018]. Therefore, we follow the introduced approach
by calculating the BLEU score using SacreBLEU 10 and its Python implementation.

Using the ROUGE scores, we can further complement the automatic evaluation. Com-
pared to BLEU, ROUGE can be seen as a recall measurement. It calculates the overlap
between the generated and target sequences based on how many n-grams of the target
also occur in the generation. In our evaluation we report ROUGE-1, ROUGE-2, and
ROUGE-L scores calculated using the rouge11 library implemented in Python. Whereas
ROUGE-1 and ROUGE-2 are referring to a unigram and bigram overlap, ROUGE-L
refers to the longest common subsequence.

Having BLEU and ROUGE scores for a quantitative analysis allows us to compare the
different models and their configurations between each other quickly. However, these
scores are focused on using unigrams or bigrams, and if not the same words occur in
both sequences, these scores might be poor. Translations can be good even though not
the exact same words are used. One can deal with the problem by having many human-
generated reference sentences to which the prediction is compared to. Since this is not
the case for our dataset, we additionally have to conduct a qualitative analysis of pre-
dicted sentences. This analysis is performed by creating a set of sample Wikidata entity
sequences matching the input structure of each model. Sentences are then generated
based on these input sequences and compared to each other across the models.

10https:// github.com/ mjpost/ sacrebleu
11https:// github.com/ pltrdy/ rouge
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Results

In this chapter, we present our results in-depth and for each research objective sepa-
rately. Our research objectives are both determined by a goal to be achieved, supple-
ment research questions, and a hypothesis. The experiments we conduct try to support
these hypotheses based on the identified research questions. Next to the set hypotheses,
which in general compare different model architectures, we also inspect the results of
the hyper-parameter adjustments introduced in Section 5.2.

Thus, this chapter is separated into two sections. Each section first describe the specific
goal, which is followed by the experiment results. We focus on the most essential and
differentiable hyper-parameter results for each model architecture. The results of all
model hyper-parameter configurations, together with some generated sentences, can be
found in Appendix A.

6.1 Sentence Generation Based on Wikidata Labels

Our overall objective is to generate natural language-like sentences based on a sequence
of Knowledge Graph entities, by using a sequence of labels collected from Wikidata
entities and try to predict a sentence based on these labels. More specifically, we want
to use Transformer based architectures and large pretrained language models to fulfill
this task. Thus, we state our first goal as follows:

Goal 1: Comparing the natural language-like sentence generation based on a sequence
of Wikidata labels between a baseline model and finetuned pretrained language
models, to improve the performance of such generative models.

Based on Goal 1 we can derive our research questions (RQ) and hypothesis as follows:

RQ 1: How can pretrained language models be finetuned to improve the natural language-
like sentence generation based on a Wikidata entity sequence?

• RQ 1.1: How can a baseline model be trained to perform the generation of a
sentence based on an entity sequence?

• RQ 1.2: How can a pretrained language model be finetuned to perform the
generation of a sentence based on an entity sequence?
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• RQ 1.3: How can the two models be compared to each other quantitatively
as well as qualitatively?

Hypothesis H1: A finetuned pretrained language model outperforms a trained baseline
model on the task of generating a natural language-like sentence given a sequence
of Wikidata labels.

To achieve the mentioned objective, we compare our baseline model results to the results
from finetuning a pretrained BART model. Since the original BART model can only deal
with a sequence of labels, the baseline model is also trained on labels. We first analyze
the results of our baseline model, followed by the results of a finetuned BART model.
The results displayed come from the generation of sentences based on our validation set,
forcing the model to generate on previously unseen data. In the last step, we compare
the two models to each other.
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Figure 6.1: Loss on validation set of the trained baseline and finetuned BART model

Baseline Approach The results of our trained baseline model on the generation task
can be found in Table 6.2. It can be seen that the two configurations having higher
learning rates perform worse compared to the configuration having the lowest learning
rate. By checking the generated sentences of these two models, we see that almost
nothing is learned in both cases. This becomes clearer when checking the validation
loss over different training epochs as seen in Figure 6.1. The model configuration with
the highest learning rate of 1e-3 only outputs empty sequences, which leads to a BLEU
score of 0. On the other hand, the configuration with a learning rate of 1e-4 generates
a choice between a few sentences, which can be seen as underfitting on the data. Our
best baseline model reaches a BLEU score of 15.34 and a ROUGE-L score of 45.83.
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Samples Optimizer LR BLEU ROUGE-1 ROUGE-2 ROUGE-L

b
a
se

li
n

e 10% Adam 1e-3 0.00000 0.00000 0.00000 0.00000
10% Adam 3e-4 1.12376 19.47139 5.69398 19.14092
10% Adam 1e-5 15.34037 45.95129 28.58206 45.82768

B
A

R
T

50% AdamW 5e-6 42.06480 64.99611 48.58221 64.36054
50% AdamW 1e-5 42.92034 65.68538 49.39549 64.97764
10% AdamW 1e-5 39.62515 63.51268 46.54062 62.74191
10% AdamW 3e-5 38.45631 62.68675 45.23251 61.97608
10% Adam 1e-5 36.23535 60.68445 42.93500 60.01353
1% Adam 1e-5 30.43606 56.11096 37.52875 55.34202

Table 6.1: Results of baseline and BART model trained on labels

To check the generated sentences of the best baseline configuration in more detail, we
conduct a qualitative evaluation of the generated sentences. 5 input sequences next to
their generated sentences are shown in Table 6.2. These input sequences were built by
hand and are not part of any of the used datasets. They do not represent a graph walk
and thus do not represent real-world truthfulness.

Inspecting the generated sentences, we can see that the model already learned to build
sentences in the correct format. However, the input label sequence is only partially used.
Sentence 1 gets many elements right and switches the label of spouse to the tokens
married to. It also replaces Michelle Obama with the surface form Michelle sounding
more fluent in this specific context.

Other generated sentences like sentences 2 and 4 miss some of the labels entirely. In
sentence 2, Donald Trump is replaced with The Bill, and the generation of sentence
4 is completely off, having nothing in common with the input sequence. A repetition
of words can be seen in sentence 5, where the label Mount Everest is replaced with a
combination of wrong surface forms.

Finetuned BART We finetune the pretrained BART model as mentioned in Sec-
tion 5.2 and take the model checkpoint with the the lowest validation loss across its
training epochs. The sentence generation results of chosen BART model configurations
can be seen in Table 6.2. Using these configurations, we can show the most important
performance differences.

The best performing model is finetuned on 50% of all data, using the adapted BART
optimizer, and a learning rate of 1e-5. Finetuning on 50% of all data took 64h on a single
GPU. It reaches a BLEU score of 42.92 and outperforms its sister configuration (42.06
BLEU) finetuned on a lower learning rate of 5e-6. Using a smaller portion of the available
dataset leads to lower BLEU and ROUGE scores, as seen on the configurations trained
on 1% and 10% of the data. Additionally, using a smaller dataset leads to a much faster
overfitting, as shown in Figure 6.1 showing the validation loss of the different finetuned
model configurations.
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Input Sequence Generated Sentence

1 Barack Obama spouse Michelle Obama
occupation lawyer

Barack Obama married to his wife
Michelle, and his career.

2 Donald Trump founded by Facebook
owned by Microsoft

The Bill is the founder and a Microsoft
Windows owned by Microsoft.

3 Switzerland instance of sovereign state
part of Europe instance of continent

The Swiss national and is a public
country that is part of Europe, and is
an annual continent.

4 Lion subclass of felidae The film is a type of the Indian Ocean
and the 2002 Indian Ocean.

5 Earth highest point Mount Everest
continent Asia

Earth’s highest point is the highest
point in Mount Mount Mount Desert
in Asia.

Table 6.2: Generated sentences from on labels trained baseline model

From the results, we can take that the optimization using the Adam optimizer, in-
cluding a fixed weight decay regularization, outperforms the Adam optimizer’s standard
implementation. This can be seen in the result table by comparing the model configu-
rations trained on 10% of all data and using a learning rate of 1e-5.

For the translation models and to get an idea of an upper boundary, we also finetune
a model based on the labels’ surface forms. This model reaches a score of 51.30 BLEU,
outperforming the best finetuned BART configuration by 8 BLEU.

Our qualitative analysis is performed on the best finetuned BART model from Table 6.1.
It suggests that the finetuned model indeed can produce fluent, natural language-like
sentences based on Wikidata labels. Our set of example sentences can be seen in Table 6.3
next to the generated sentences by the finetuned BART model. All generated sentences
incorporate the knowledge from the input sequence, including punctuation. Sentence 2
and 4 produce the expected output while not mentioning more facts than given by the
input sequence. Still, sentence 3 produces the span centre of European politics, which is
not given in the input sequence. As shown in sentence 2, the finetuned BART model can
produce sentences that are based on wrong facts. Thus, it can be argued that the input
sequence gets more attention than the incorporated world knowledge of the pretrained
model.

Additionally, we inspect BART’s sentence generation with varying entities and pred-
icates occurring in an input sentence, starting with sentence 6 in Table 6.3. Sentence
6 has many entities and predicates linked to the start entity of Germany. Nonetheless,
BART can generate a correct output sentence based on the given input. The objects
linked to Germany and the object linked to Berlin all reference their specific subject.
BART generates a new output sequence by changing the order of the input labels, as
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can be seen in sentence 7. We note that the generated sentence is highly dependent on
the input order, meaning that BART does not select statements from the input sequence
first and orders the statements accordingly. By switching the subject and object of a
triple, BART mostly reasons on that new order, so that sentences are generated that
do not describe true statements anymore. A counterexample can be seen in sentence 9.
BART generates a sentence describing that Berlin is the capital of Germany even though
the input sequence of Berlin capital Germany specifies that Germany is the capital of
Berlin. The correct predicate in this case can be seen in sentence 8. Thus, we can argue
that BART mainly generates sentences in the order of the given input sequence but can
still do some reasoning about the entities and their relations to each other. More of
these sequence and triple modifications are shown in Table A.4.

Input Sequence Generated Sentence

1 Barack Obama spouse Michelle Obama
occupation lawyer

Barack Obama and his wife Michelle
chose to pursue a career as an attorney.

2 Donald Trump founded by Facebook
owned by Microsoft

Trump is the founder of Facebook,
which is owned by Microsoft.

3 Switzerland instance of sovereign state
part of Europe instance of continent

Switzerland is a sovereign country in
the western part of Europe, and is a
centre of European politics and com-
merce in the continent.

4 Lion subclass of felidae The lion is a type of felidae.

5 Earth highest point Mount Everest
continent Asia

The highest mountain on Earth is the
highest peak, Mount Everest, on the
continent of Asia.

6 Germany is a country part of West-
ern Europe capital Berlin inception
XMLSchema#dateTime located in or
next to body of water Spree

Germany is a country in the northern
part of Western Europe, with its cap-
ital city Berlin, which was founded on
the shore of the Spree.

7 Germany capital Berlin located in or
next to body of water Spree inception
XMLSchema#dateTime part of West-
ern Europe

Germany’s capital, Berlin, on the shore
of the Spree, was founded on May 1,
1801, and is the oldest continuously in-
habited part of Western Europe.

8 Berlin capital of Germany inception
XMLSchema#dateTime

Berlin, the capital of Germany, was
founded on April 1, 1771.

9 Berlin capital Germany inception
XMLSchema#dateTime

Berlin, the capital city of Germany,
was founded on April 1, 1793.

Table 6.3: Generated sentences from the on labels finetuned BART model
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Since the qualitative inspection suggested better performance than the finetuned
BART model’s scores, we analyze the generation in more detail. We find two char-
acteristics that lower the scores of the finetuned BART model, namely dates as well as
missing labels in the dataset. Dates are replaced in the dataset with a special token.
Even though we could finetune BART using numbers, we decided against it to keep it
comparable to our second objective. This decision highly reduces the generated sen-
tences’ accuracy since dates like birthdays in autobiographies or construction dates of
buildings are almost never generated correctly. Even though the date format is generated
in an accurate manner, the exact numbers are not, lowering the scores of the generated
sentence. Examples of wrong date insertions can also be seen in sentences 6-9 of Table
6.3.

Another issue is missing labels in the input sequence of our datasets. Many target
sentences are mentioning facts not stated in the input sequence. The model still can
create a natural language-like sentence for these input sequences but might be off the
target sentence by several tokens. This is commonly seen in examples where the input
sequence starts with a predicate label missing an entity at its first position. To follow
that lead, we explore sentences starting with the predicate <P31, instance of> in more
detail. We can see that the model often generates an entity related to the true target
entity but is not the same entity (e.g., a neighboring city of the actual one, or another
natural phenomenon). Since these wrongly chosen entities mostly consist of more tokens,
sentences tend to have lower scores. As mentioned in Section 5.1, some input sequences
are labeled falsely, aligning wrong entities to the target sentence. This again makes the
task of generation harder for the finetuned model.

Comparison Answering RQ 1.1, we showed that the baseline model can produce nat-
ural language-like sentences while reasoning on the input to a certain extent. We further
demonstrate that a finetuned BART is able to produce natural language-like sentences
based on an input sequence of Wikidata labels which answers RQ 1.2. Comparing the
two models, we can say that the finetuned BART model outperforms our baseline model.
It reaches a score of 24 BLEU higher than our baseline model when trained on the same
amount of data (10%). The different ROUGE scores of the finetuned model are also
considerably higher.

Additionally, the finetuned BART model’s generated sentences are more fluent and
incorporate more knowledge from the input sequence than the baseline model. We thus
accept our hypothesis H1 by saying that BART outperforms our baseline model on the
same data, both quantitatively as well as qualitatively.

6.2 Label-Based vs. ID-Based Generation

Our second goal is to compare different input sequence types between each other: IDs
and labels. We hypothesize that encoding entity IDs as an input sequence can leverage
results since knowledge between different Wikidata entities can be embedded. Making
use of that embedded knowledge between IDs could improve the performance of sentence
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generation based on Wikidata entities. Our second goal, its research questions, and
hypothesis are the following:

Goal 2: Comparing the generation of natural language-like sentences based on a se-
quence of Wikidata IDs to the generation based on their respective labels, to
understand the difference between the two approaches.

RQ 2: Can the generation of natural language-like sentences be improved by choosing
entity IDs over labels as an input sequence?

• RQ 2.1: How can a baseline model be trained to generate a sentence given an
input sequence consisting of entity IDs?

• RQ 2.2: How can a model be finetuned to generate a sentence given an input
sequence consisting of entity IDs?

• RQ 2.3: How can the baseline model be compared to the finetuned model?

• RQ 2.4: How can the model trained on entity IDS be compared to the one
trained on labels quantitatively as well as qualitatively?

Hypothesis H2: A language model trained on the generation of natural language-like
sentences based on Wikidata IDs outperforms a model trained on the respective
Wikidata labels.

An essential part of the objective is to train a model that is able to transform a sequence
of entity IDs into a natural language-like sentence. However, comparing this ID-based
model to a label-based model is the overall objective. To do so, we use the finetuned
BART model discussed in Section 6.1

Baseline Our baseline trains a Transformer on a sequence of Wikidata IDs aligned
with a natural language-like sentence. The results of the baseline model are shown in
Table 6.4. It can be seen that the model using the largest learning rate has a BLEU and
ROUGE score of 0. That specific model configuration generates sentences consisting
of empty strings and has not learned anything at all. Having lower learning rates, the
scores slightly improve from almost 2 BLEU to 11.5 BLEU. The best baseline model
configuration uses a learning rate of 1e-5 and reaches a ROUGE-1 and ROUGE-L score
of around 40. Inspecting the high ROUGE scores, we can argue that the model already
generates a large portion of the target sentences’ actual tokens.

Learning Rate BLEU ROUGE-1 ROUGE-2 ROUGE-L

1e-3 0.00000 0.00000 0.00000 0.00000
3e-4 1.90713 16.55452 5.33299 16.38419
1e-5 11.54714 41.01040 23.69338 40.74124

Table 6.4: Results of baseline model trained on IDs
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To not rely on the scores alone, we check generated sentences by the baseline model
qualitatively. Our example input sequences, together with the generated sentences by
the baseline model, can be seen in Table 6.5. Inspecting the generated sentences, we
see that the overall format of generating sentences is learned correctly. In sentence 1,
the generated sentence also incorporates all input entities correctly with their regarding
surface form. Other sentences however do not work that well. For example, sentence 2
transforms the ID Q22686 to the surface form Robert Smith even though the entity is
about Donald Trump. Sentence 3, 4, and 5 have the same problem of not being able to
map certain entity IDs to its corresponding surface form.

Input Sequence Generated Sentence

1
Q76 P26 Q13133 P106 Q40348 Barack Obama and his wife Michelle

Obama, who had a career as an
attorney.

(Barack Obama spouse Michelle
Obama occupation lawyer)

2
Q22686 P112 Q355 P127 Q1213 Robert Smith was the founder and

Facebook owner of the City of Wagon.(Donald Trump founded by Facebook
owned by Microsoft)

3
Q39 P31 Q3624078 P361 Q46 P31
Q5107

The Swiss Cross is a country system
of Europe that is a part of the City of
Gersh(Switzerland instance of sovereign

state part of Europe instance of con-
tinent)

4
Q140 P279 Q25265

”The lion is a type of ”” fine ””.”
(Lion subclass of felidae)

5
Q2 P610 Q513 P30 Q48 Earth’s highest point is the highest

point in Mount Everest, named after
the continent of Asia.

(Earth highest point Mount Everest
continent Asia)

Table 6.5: Generated sentences from the best baseline model trained on IDs

BART for Machine Translation The results of the trained BART model having an
additional encoder are displayed in Table 6.6. As can be seen, the model configurations
perform poorly no matter the training data, the learning rate or if input sentences are
downsampled. Additionally, one can observe that the BLEU and ROUGE scores are the
same across different model configurations. This indicates that all model configurations
learned to generate the same output. By checking the generated sentences, we note that
the model only produces a small variation of sentences. This confirms that the model
only learned to generate the most often occurring entities.

To better understand the model’s behavior, we additionally train several configurations
with all combinations of parameters. This includes changing the number of the encoder
layers of the added encoder. However, the results stay the same. Inspecting the single
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Samples Downsampled LR BLEU ROUGE-1 ROUGE-2 ROUGE-L

1% FALSE 1e-4 0.015506 11.6161 0.049183 11.34021
30% FALSE 1e-4 0.00841 7.600451 0.012089 8.0874
30% FALSE 5e-5 0.188195 10.23326 0.486224 11.50871
30% TRUE 1e-5 0.188195 10.23326 0.486224 11.50871
100% TRUE 1e-5 0.188195 10.23326 0.486224 11.50871

Table 6.6: Results of BART for machine translation trained on IDs

layers of the model one by one, we notice that the last encoder layer’s output produces
the same embeddings. These embeddings are equal regardless of the input from the
newly trained encoder. This means that the previously finetuned BART encoder did
not learn how to handle the new input accordingly.

To exclude a bug in our implementation, we check our model’s ability to translate
German sentences into English sentences similar to the original BART paper. Even
though the results are not particularly good, the model is able to learn a translation.
This means that the task of translating a sequence of entity IDs into a sequence of labels
is harder than a usual translation task, regarding the data used. Additionally, learning
to translate two similar length sequences might be easier than learning multiple tokens
from one single ID.

Translation To pursue whether other models are able to generate natural language-
like sentences from a sequence of Wikidata IDs, we first investigate if labels can be
translated from IDs. Doing so will allow us to use contextualized labels and their em-
beddings over a simple ID to label mapping. These contextualized labels lead to more
knowledge included in the model. The translation model we use is the Transformer de-
scribed in Chapter 4. Results of model configurations are presented in Table 6.7. It can
be seen that using a larger amount of data improves the results. Our best translation
model uses all the available data, a hidden dimension of 1024, and a learning rate of
1e-4. It reaches a BLEU score of 53.37 and a ROUGE-1 score of 72.64, showing that
many tokens from the target sequence also appear in the prediction.

Samples Hid. Dim. LR BLEU ROUGE-1 ROUGE-2 ROUGE-L

10% 1024 1e-4 17.32067 35.87757 22.15259 37.54379
100% 1024 1e-4 53.37352 72.64361 58.32042 73.73855
10% 256 1e-4 2.89304 11.63534 4.634781 12.38123
100% 256 1e-4 50.58442 71.03164 56.24096 71.83572
100% 256 5e-4 16.43847 33.67716 20.46892 33.65074
100% 128 5e-4 42.26839 63.08361 47.51500 64.01119
100% 64 1e-3 35.40920 57.11204 40.98437 58.23007

Table 6.7: Results of the translation model trained on IDs
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Reducing the hidden dimension from 1024 while keeping the learning rate fixed re-
sults in lower scores. Additionally, a good balance has to be found between the hidden
dimensions and the learning rate. This can be seen using the two model configurations
of Figure 6.7 having a learning rate of 5e-4. While the one with 256 hidden dimensions
performs poorly with only a score of 16.44 BLEU, the one with 128 hidden dimension
scores 42.27 BLEU. However, when trained with a smaller learning rate, the model
configuration with 256 hidden dimensions can outperform the other.

Translation to BART Our model transforming contextualized translated IDs into a
natural language-like sentence uses two previously introduced and trained models. The
Transformer translating IDs into contextualized labels and the BART model finetuned
on a sequence of contextualized labels. We use the best performing configuration from
both models to train the complete model connected via a trainable middle layer. The
results are displayed in Table 6.8.

From the results, we can observe that only model configurations using a low learning
rate of 1e-5 can produce results worth mentioning. The best model configuration uses
10% of all data having a hidden dimension size of 512 in the trainable middle layer.
Thus, the best configuration first reduces the dimensions in the trainable middle layer
instead of expanding them. It reaches a BLEU score of 11.98 and a ROUGE-1 score of
36.38, thus having a higher recall than precision. The model configuration increasing
the layer size to 2048, while keeping the data and learning rate fixed, performs slightly
worse. It reaches a BLEU score of 11.76.

Additionally, we generate natural language-like sentences on the ID-based input se-
quence by using a sequential approach. First, translating the sequence of input IDs into
contextualized labels and feeding this output directly to the finetuned BART results in
higher scores than the approach using a middle layer. This sequential approach reaches
a BLEU score of 35.74, outperforming the middle layer approach by nearly 24 BLEU.
Again, this supports the fact that translating embeddings from one task to another is
harder than we expected.

Samples Hid. Dim. LR BLEU ROUGE-1 ROUGE-2 ROUGE-L

1% 2048 3e-4 0.16423 12.57257 1.186031 12.41652
1% 2048 1e-5 9.867016 32.76723 15.93545 32.51841
10% 2048 1e-5 0.191977 13.22733 1.014918 12.75595
10% 2048 1e-5 11.75899 35.72452 18.38085 35.55134
10% 512 1e-5 11.98177 36.37637 18.96035 36.25002

Table 6.8: Results of the translation to BART model trained on IDs

We qualitatively analyze the translation model and the models built on it together. The
results of our sample sentences can be seen in Table 6.9. Checking the translation of our
ID to label model, we see that for our sample sentences, the generated output sequences
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are moderate. In sentence 1 the ID Q76 gets translated to President Obama whereas the
ID for Michelle Obama gets translated to Lady Obama. One might argue that these sur-
face forms can make sense in a certain context, but together with the translated predicate
husband, the generated label sequence does not seem to be particularly good. Sentence
2 does correctly translate Donald Trump, Facebook, and their connecting predicate but
does fail on the translation of Q1213 to Microsoft. The same holds for sentence 3, where
the first part of the sequence sounds correct, but the continent Europe is translated into
Mirren. By checking more translations generated on our test set, we can observe that
the translations shown in Table 6.9 are worse than the average generated translations.

1

Input IDs Q76 P26 Q13133 P106 Q40348

ID-Label Trans. President Obama husband Lady Obama career at-
torney

Trans.-BART-Middle President Barack Obama and his wife, Nancy, and
former First Lady Nancy Obama, while he was still
a career federal prosecutor.

Trans. Sequential President Obama and his husband, First Lady
Obama, are both career lawyers and attorney.

2

Input IDs Q22686 P112 Q355 P127 Q1213

ID-Label Trans. Donald Trump founder Facebook belongs to Indian
Reservation

Trans.-BART-Middle The company was founded in 1997 and belongs to
the International Federation of the Manufacturers of
Automobiles and Motorcycles ( FIM ).

Trans. Sequential Donald Trump, founder of Facebook, belongs to the
Tukwila Indian Reservation.

3

Input IDs Q39 P31 Q3624078 P361 Q46 P31 Q5107

ID-Label Trans. Switzerland is a sovereign sovereign country part of
Europe is a Mirren

Trans.-BART-Middle Switzerland is a country in the northern part of Eu-
rope and is a component of the European Economic
Area.

Trans. Sequential Switzerland is a sovereign sovereign country, part
of Europe , and is a constituent of the European
Community ( EEC ).

Table 6.9: Generated sentences from the best translation models

The model using a middle layer to transform embedding outputs of the translation into
understandable input for BART generates fluent but mostly incorrect sentences. The
span Michelle Obama for example became Nancy Obama who is no relative or connected
to her at all. Sentence 2 does not contain any information from the input IDs except for
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the relations founded by and belongs to.

The sequential model makes better use of the translated IDs and can build fluent
sentences around them. However, it also incorporates false translations into its generated
sentences. This can mostly be seen in sentence 3, where the translation model generates
sovereign twice in a row. The finetuned BART model takes the input sequence as-is and
does not change the repeating word. Thus, it is blindly using the input sequence.

Comparison Concluding our second objective, we can see that the task of learning
natural language-like sentences from an input sequence of Wikidata IDs is difficult.
We show that our baseline model can produce such natural language-like sentences to
a certain extent, reaching a score of 11 BLEU. A model combination of pretrained
translation and generation connected via a trainable middle layer is on par with our
baseline model, based on scores alone. However, the generated sentences seem worse than
our baseline, and thus we cannot clearly say which one performs better or worse. The
translation model alone can generate contextualized labels based on Wikidata entity IDs
but makes mistakes during the generation. These mistakes are carried on to the finetuned
BART model, generating a sentence based on the translated IDs. Even though some
mistakes are carried on, a sequence of these two models can improve upon our baseline
by around 20 BLEU. The generated sentences also seem more fluent and grammatically
correct.

Moreover, training and finetuning BART with an additional encoder does not work as
expected on any of the trained model configurations. This shows us that the problem of
translating ID embeddings into understandable embeddings for BART is hard. A single
encoder is not capable of this task. We argue that the main issue of this task is having
many different Wikidata IDs building our vocabulary. This vocabulary can only be re-
duced by removing more IDs from the vocabulary, as shown in Section 5.1. Then again,
reducing the vocabulary leads to less training data as sentences with too few tagged
entities would have to be removed. Additionally, sentences can then solely be generated
on the Wikidata IDs available in the vocabulary leading to a smaller domain of possible
sentences to be generated. These issues together makes the training of our models harder.

To compare BART finetuned on a sequence of labels to the models trained on IDs, we
need to finetune BART once more on different data. Since BART can use all Wikidata
labels, we trained it for our first objective using all available labels. However, having
much more input information at hand would not be fair compared to an approach using
a reduced set of available entities. Thus, we reduce the data to finetune BART to the
same entities we used to train the ID-based models.

Comparing this newly finetuned BART to the models of this section still shows clear
results. The BART model finetuned on a sequence of labels reaches a BLEU score of
41.22, whereas the best model trained on a sequence of entity IDs reaches a score of 35.74
BLEU. However, the model trained on IDs does not directly incorporate the ID embed-
dings but translates the IDs first into labels, so that that the gained knowledge from
embedding the Wikidata IDs is lost except for the context given with contextualizing
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the labels.
Our model, which transforms the translated label embeddings directly into an input

understandable by BART, only reaches 11 BLEU and is outperformed by the BART
model directly trained on labels. Thus, we conclude that our Hypothesis H2 does not
hold for the models we trained.
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Conclusions

In this thesis, we studied the generation of natural language-like sentences based on a
sequence of input facts. These input facts consist of Wikidata entities and their connect-
ing predicates but do not necessarily need to be connected via a path in the Wikidata
knowledge graph. We trained several models using a sequence of these facts to gen-
erate the matching natural language-like-like sentence. More specifically, we compared
six different model architectures either trained from scratch or already pretrained but
finetuned on the same task. All the trained models are based on the Transformer ar-
chitecture, and we used BART as a pretrained model. Additionally, we compared two
types of input sequences: a Wikidata label and a Wikidata ID-based input format.

Following these goals, we processed the freely available T-REx dataset. The dataset
annotates Wikidata entities in the related Wikipedia sentences. We ended up with a
training dataset containing over 4.2 million aligned sentences usable for both input se-
quence formats.

The first objective of this thesis focused on creating natural language-like sentences
from a sequence of Wikidata labels and compared a baseline model to the finetuned
BART model. Results show that it is indeed possible for both models to generate such
Wikipedia like sentences. Nevertheless, finetuning the pretrained BART model on this
task can outperform our baseline model by far. The finetuned model can produce more
fluent sentences based on the given input facts and incorporates the given knowledge
better, while making fewer errors. It is also possible to generate sentences across all
Wikipedia domains and articles, not limited to the first sentence. Thus, we accept our
Hypothesis that finetuning a pretrained model on our task can outperform the baseline
model.

However, the finetuned model is not perfect. Missing annotated entities in the dataset
and translating dates into the same input token can reduce the performance model. It
should be noted that the BART model can be trained on additional input facts that are
not necessarily part of a knowledge graph. These facts could be any kind of strings like
proper names or, as in this case, dates.

In our second objective, we compared the sentence generation based on an input sequence
of Wikidata IDs to a label-based input sequence. Since this change in the input sequence
requires a change in any model’s embedding layer, the embedding layer has to be replaced



48 CHAPTER 7. CONCLUSIONS

or retrained entirely but cannot be finetuned directly. Thus, the training on IDs makes
the task harder for the trained models. Our results show that this task is indeed harder,
as none of our trained models can clearly outperform our baseline. The most promising
model, BART adapted for machine translation, cannot cope with the task, and none
of the configurations trained learns the generation task at all. We showed that it is
possible to train a Transformer based translation of IDs into their contextualized surface
forms. Using the output of this translation can then be fed again into a finetuned BART
model. This sequence of models performs better than the models trained on the single
task of training to generate a sentence based on a sequence of Wikidata IDs. Therefore,
we reject our hypothesis that the use of an ID-based input sequence can improve the
sentence generation based on a label-based approach.

This conclusion contradicts the broad assumption that end-to-end trained models
outperform models having a modular design. However, our tasks of translating IDs into
a sequence of labels and the task of generating natural language-like sentences are both
not trivial. This combination of the two tasks might lead to an overall task too hard
for the models under consideration. Thus, the modular alternative, where each model is
trained separately, could be the right approach to the problem.

We argue that the increase in difficulty relies on the change of the vocabulary size vital
to deal with Wikidata IDs. Using IDs as the input increases the vocabulary size by each
new ID in the dataset so that a limitation to specific most occurring IDs, especially for
large knowledge graphs, is required. Limiting these IDs makes training sparser, resulting
in less training data and a smaller domain.

Outlook We finetuned a pretrained language model on the task of generating a single
sentence over a sequence of Wikidata entities. Whereas our label-based approach worked
well, the ID-based approach did not. Future work should focus on the limitations of the
ID-based approach in more detail. Thus, the embedded information between entities and
relations of a knowledge graph could be taken into account. Such an approach might
use previously constructed graph embeddings or ways to deal with larger vocabularies.

Additionally, the use of a cleaner, more densely annotated dataset might help to
improve the performance. Such datasets exist but are domain-specific. This would
require a new annotation algorithm that aligns knowledge graph triples with text. Being
finally able to generate sentences more accurately also allows the building of applications.
These applications can then be used together with a knowledge graph’s truthfulness to
generate true sentences over given graph paths.
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Appendix

On the following pages we show additional information summarized in large tables.
This includes the hyper-parameter adaptions the models were trained on as well as the
associated results.

Setup We present all hyper-parameter settings in Table A.1. The column In specifies
the input vocabulary size whereas the column Out specifies the size of the target vocab-
ulary. Hid. Dim. indicates the number of hidden dimensions. The hidden dimension
might be defined differently regarding different models and should be checked by using
Section 5.2. Column Downs. reports if IDs or labels in the training sentences were
downsampled. The ID of each model will be used in the results table as well.

Results The results of the model variations are shown in Table A.2. As in Chapter
6 we state the BLEU and ROUGE scores. The models can be linked to the hyper-
parameter settings via the ID column. A * in a score field indicates that we could not
calculate the score due to an error in the ROUGE score calculation.

Generated Sentences We present more generated sentences in Table A.3. The sen-
tences are chosen randomly from our test set and are presented next to the original
target sentence. We use the best performing model of each model category to generate
the output sentence. Additionally, we show 20 different sentence variations based on the
same entities and predicates in Table A.4.
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Model ID BLEU ROUGE-1 ROUGE-2 ROUGE-l

Baseline Labels bl-1 0 0 0 0
bl-2 1.123765 19.47139 5.693975 19.14092
bl-3 15.34044 45.95129 28.58206 45.82768

Baseline Ids bi-1 0 0 0 0
bi-2 1.907134 16.55452 5.332989 16.38419
bi-3 11.54714 41.0104 23.69338 40.74124

BART B-1 0.02532 13.73772 0.360986 16.61815
B-2 28.9671 55.36641 36.33771 54.67537
B-3 30.43606 56.11096 37.52874 55.34203
B-4 0.00438 4.976551 0.003736 8.756074
B-5 0.157377 * * *
B-6 36.23535 60.68445 42.935 60.01353
B-8 37.95499 62.31538 44.89822 61.72198
B-9 39.62515 63.51268 46.54062 62.74191
B-10 38.45631 62.68675 45.23251 61.97608
B-11 39.79686 63.66637 46.63661 62.90538
B-12 42.92034 65.68538 49.39549 64.97764
B-13 42.0648 64.99611 48.58221 64.36054

BART-MT BMT-1 0.015506 11.6161 0.049183 11.34021
BMT-2 0.188195 10.23326 0.486224 11.50871
BMT-3 0.015506 11.6161 0.049183 11.34021
BMT-4 0.188195 10.23326 0.486224 11.50871
BMT-5 0.188195 10.23326 0.486224 11.50871
BMT-6 0.00841 7.600451 0.012089 8.0874
BMT-7 0.188195 10.23326 0.486224 11.50871
BMT-8 0.1077 13.98067 0.227796 12.54011
BMT-9 0.188195 10.23326 0.486224 11.50871
BMT-10 0.188195 10.23326 0.486224 11.50871
BMT-11 0.00841 7.600451 0.012089 8.0874
BMT-12 0.188195 10.23326 0.486224 11.50871
BMT-13 0.1077 13.98067 0.227796 12.54011

Translation T-1 1.564703 4.917149 1.93553 5.115813
T-2 1.984104 6.690321 2.867255 7.004961
T-3 0.029495 * * *
T-4 0 0 0 0
T-5 2.834947 8.42017 3.740959 8.810606
T-6 0.895954 5.28394 1.601399 6.423045
T-7 0 0 0 0
T-8 1.629299 5.813638 2.347951 6.363033
T-9 2.893042 11.63534 4.634781 12.38123
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T-10 0 0 0 0
T-11 0 0 0 0
T-12 17.32067 35.87757 22.15259 37.54379
T-13 35.4092 57.11204 40.98437 58.23007
T-14 38.24787 59.85558 43.71784 60.70243
T-15 19.4245 39.38167 24.03838 40.05311
T-16 7.163043 17.59693 9.415023 17.86017
T-17 42.26839 63.08361 47.515 64.01119
T-18 41.67328 63.21315 47.14553 63.95228
T-19 0 0 0 0
T-20 16.43847 33.67716 20.46892 33.65074
T-21 50.58442 71.03164 56.24096 71.83572
T-22 0 0 0 0
T-23 0 0 0 0
T-24 53.37352 72.64361 58.32042 73.73855

Translation-BART-M TBM-1 0.026357 11.09486 0.22098 10.72951
TBM-2 0.16423 12.57257 1.186031 12.41652
TBM-3 9.867016 32.76723 15.93545 32.51841
TBM-4 0.106863 13.05058 0.79484 12.36823
TBM-5 0.191977 13.22733 1.014918 12.75595
TBM-6 11.75899 35.72452 18.38085 35.55134
TBM-7 11.98177 36.37637 18.96035 36.25002

Table A.2: BLEU and ROUGE scores of all model variations
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