University of
Zurich™

A Framework for
Creating Sequences of

Versioned Knowledge
Graphs from Wikidata

Thesis November 6, 2019

Corina Riiegg
of Zurich ZH, Switzerland

Student-1D: 15-701-709
corina.rueegg@uzh.ch

Advisor: Daniele Dell’Aglio

Prof. Abraham Bernstein, PhD
Institut fir Informatik
Universitat Zurich
http://www.ifi.uzh.ch /ddis

Acknowledgements

I would like to thank my advisor, Dr. Daniele Dell’Aglio, for his support and guidance
throughout the process of writing this thesis. He provided me with valuable feedback
during the meetings and with reviewing the chapters.

Further, I thank Romana Pernischova and Matthias Baumgartner for giving feedback
on the requirements of the framework and supplying relevant papers.

Finally, I would like to thank Professor Abraham Bernstein for letting me write the
bachelor thesis at the Dynamic and Distributed Information Systems Group and there-
fore, being able to work on the interesting topic of knowledge graphs.

Zusammenfassung

Die Evolution von Wissensgraphen, sogenannten Knowledge Graphs, stosst in der For-
schung auf zunehmendes Interesse. Aus diesem Grund bildet diese Thesis dafiir eine
Grundlage, indem sie ein Framework entwickelt, welches historische Versionen des Wiki-
data Wissensgraphen nachbildet. Um Ressourcen zu sparen extrahiert das Frame-
work einen Subgraphen aus dem Original und generiert die urspriinglichen Versionen
basierend darauf. Mogliche Verzerrungen durch verschiedene Sampling Methoden wer-
den analysiert und stimmen mit den Ergebnissen aus bisherigen Studien tiberein. Dariiber
hinaus beschreibt diese Arbeit die verschiedenen Arten von Revisionen und wie diese
riickgéngig gemacht werden kénnen um eine Sequenz von fritheren Versionen des Sub-
graphen zu erhalten. Schlussendlich wird aufgezeigt, wie diese Versionen in einem Stan-
dard RDF Format zuriickgegeben werden.

Abstract

Studying the evolution of knowledge graphs has become an important topic of current
research. For that purpose, this thesis provides a foundation by contributing a frame-
work that creates historic snapshots of the Wikidata knowledge graph. In order to save
resources, the framework extracts a sample out of the original graph and generates the
snapshots based on that sample. The behavior and biases of different traversal-based
sampling techniques are analyzed and they agree with previous observations by related
work on sampling. This work further describes the types of revisions and how they can
be undone in order to create a sequence of versions of the sampled graph in earlier stages
of its history. Finally, it demonstrates how the snapshots are returned in a standard RDF
format.

Table of Contents

Graph Sampling]

[3.1 Classes of Sampling Algorithms|
8.1.1 Random Sampling| L.
13.1.2 Topology-Based Sampling|

Requirements|

4.1 Requirements for Sampling| 000
4.2 Requirements for Creating Snapshots|.
4.3 Requirements for Displaying the Results]

Implementation|

5.2.2 MySQL Database Schema)
b.3 Sampling Process|
[5.3.1 Sampling a Neighboring Node and Edge|
5.3.2 Forest Fire Sampling/
[5.3.3 Metropolis-Hastings Random Walk{
[5.3.4 Other Sampling Techniques|
5.4 Comparison of the Sampling Techniques|
5.4.1 Graph Metrics|

11
11
12
12
12

19
19
20
21

X Table of Contents

[5.4.2 Comparison of the Graph Metrics| 34

.5 Creating Snapshots|. 38
[5.5.1 PostgreSQL Revision Database| 38

15.5.2 Undoing the Revisions| 39

5.6 Returning the Snapshots|. L. 44
0.6.1 NetworkX to RDETAbl oo .. 44

0 Limitations| 47
[(__Future Work| 49
8 _Conclusions| 51
A AbD] 57
Al Contentsofthe CDf. o 57

Introduction

1.1 Motivation

Knowledge graphs have become ubiquitous in our daily lives. We interact with them
in various ways, although we do not obviously recognize them. While surfing through
the internet we get product suggestions through recommender systems. When doing
a Google search not only links but also a box with auxiliary information and context
is displayed to the user. Personal digital assistants are used to answer questions or to
complete tasks the user assigned to it. Hiding behind all these interactions are knowledge
graphs which provide applications with their linked data.

Google coined the term ”Knowledge Graph”[] in 2012. Today, there exist many dif-
ferent knowledge graphs, commercial as well as open-source. Among the openly avail-
able ones, the most prominent graphs are DBpedia, Freebase, YAGO, OpenCyc and
Wikidata. These graphs arrange knowledge as networks with nodes describing things
and edges expressing the relations between them. This thesis focuses on the Wikidata
knowledge graph. Wikidata is a free collaborative knowledge base where users can con-
tribute and edit data. In a comparative study between different free knowledge graphs
Wikidata has shown to be one of the most complete graphs and it also stands out in
other quality aspects like trustworthiness, accuracy, accessibility and relevancy [Farber,
et al., 2017].

Knowledge graphs, as well as knowledge itself, naturally evolve over time. New knowl-
edge is added, already existing knowledge may be updated or has to be corrected in cases
of wrong or unspecific information. Analyzing the evolution of knowledge graphs can
provide researchers with new discoveries. They are for example interested of how evolu-
tion affects the services implemented on top of the knowledge graphs [Pernischova, 2019
or in the prediction of the occurrence or recurrence time of facts (in this context, fact
means an edge describing a relation) |Trivedi et al., 2017].

To be able to conduct research on knowledge graph evolution, all the changes a graph
experiences need to be kept track of. This can either happen by storing old versions
of the knowledge graph or by providing a change history which collects each of the
revisions individually. The maintainers of Wikidata offer both data sets. Nevertheless,
there are several difficulties when working with old versions of Wikidata. First, they are

Lhttps: // www.blog.google/ products/ search/ introducing-knowledge- graph- things-not,/

https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

2 CHAPTER 1. INTRODUCTION

not available at regular intervals and second, they may contain changes over a too long
time period. Further, processing the whole Wikidata knowledge graph would require a
high amount of resources such as memory and time.

1.2 Description of Work

This motivation leads us to the goal of this thesis which is the design and implementation
of a framework for creating sequences of versioned knowledge graphs (snapshots) from
Wikidata. The framework first extracts a sample from the current Wikidata graph to
save resources. To this objective, this work discusses and implements different sampling
techniques. The framework then accesses the revisions for the sampled graph from the
change history provided by Wikidata. It has to undo these revisions in their correct
order to generate a sequence of snapshots of how the sample graph looked like back
in time. Such an approach helps to overcome the obstacles discussed before as we are
aware of each individual revision. In contrast, old data dumps only contain summarized
revisions over a long time period. Furthermore, working with samples saves a lot of
computing resources. Therefore, this thesis should provide a resource-efficient, precise
tool to generate a sequence of historical snapshots from the Wikidata knowledge graph.

1.3 Outline

Chapter [2 gives an introduction into the Semantic Web with attention to Wikidata and
the way Wikidata structures its data. The third chapter analyzes different graph sam-
pling techniques by comparing related work. In Chapter [4| the frameworks requirements
are discussed, followed by the description of the implementation in Chapter The
implementation chapter is divided into an overview of the framework and the imple-
mentation of each the sampling, the undoing of the revisions and the returning of the
snapshots. Chapter [6] then discusses the limitations of the framework, whereas Chapter
[7] contains enhancements and ideas for future work. Finally, Chapter [§ concludes this
thesis with a critical reflection and a short summary.

2
Wikidata and the Semantic Web

In order to pave the way for implementing a versioning tool for Wikidata, we first
have to take a look at the foundation concepts of the Semantic Web and how Wikidata
organizes its data. The first section discusses the key concepts of the Semantic Web
while the second section introduces the collaborative knowledge base Wikidata which is
based on these concepts. The final section then discusses the Wikidata data model.

2.1 Introduction to the Semantic Web

The vision of the Semantic Web is to make web data machine readable [Berners-Lee
et al., 2001]. This way, it is possible to integrate data across websites and query not
only for keywords but also contextual information. Semantic Web follows three main
design principles:

» Labeled graphs model objects as nodes and edges as relations between those ob-
jects. Resource Description Framework (RDF) [Miller and Manola, 2004] is used
to formalize such logic statements.

+ Uniform Resource Identifiers (URIs) identify data items and their relations.

» Ontologies formally describe the semantics of the data.

RDF uses resources, properties, statements and graphs as concepts. A resource de-
scribes an object with an URI which unambiguously refers to that object. Properties
(again declared with URIs) are used to express relations between resources. Statements
then specify a claim about an object. This claim is handled as a triple consisting of a
resource, a property and a value. A value, in turn, may be either another resource or
a literal (e.g. numbers, strings, dates). Such statements can further be illustrated as
graphs with the property as a label for the edge which is directed from the subject of
a statement to the object. The object may then be the subject of another statement.
This linking of data results in a knowledge graph which can be shared across different
applications. A simple RDF statement extracted from the Wikidata knowledge base is
represented in Figure [2.1]| as a simple graph with two resource nodes and a directed edge
describing the relationship between them.

4 CHAPTER 2. WIKIDATA AND THE SEMANTIC WEB

. . http:/fwww.wikidata.org/prop/direct/P17 L .
http://wwW.wikidata.org/entity/Q72 > http: //www.wikidata.org/entity/ Q39

URI for Resource Zirch UR! for property country URI for resource Switzerand

Figure 2.1: A Simple RDF Statement

The statement in Figure is expressed with full triple notation which means that
each URI has to be written out completely. Since such a notation would result in
many repetitions and long statements, there is a way to abbreviate URI references with
qualified names. A qualified name consists of a prefix, a colon and a local name. The
prefix is assigned to a namespace URI. Therefore, resources and properties starting with
the same namespace can share the corresponding prefix. The shorthand notation of our
simple RDF statement consequently results in:

PREFIX wd: <http://www.wikidata.org/entity/> .
PREFIX wdt: <http://www.wikidata.org/prop/direct/> .
wd:Q72 wdt:P17 wd:Q39 .

2.1.1 Querying the Semantic Web

To make use of the information represented in RDF, we need to be able to access relevant
data parts. For this purpose a query language is needed. SPARQL is the W3C recom-
mendation query language for RDF [Seaborne and Prud’hommeaux, 2008]. SPARQL
queries normally consist of a set of triple patterns, namely a basic graph pattern. Such
patterns are similar to RDF, but each of the subject, property and object may be substi-
tuted with a variable. A variable is assigned a ”?” at the beginning. A graph pattern for
the RDF statement in Figure that introduces a variable for the object has therefore
the following structure: wd:Q72 wdt:P17 ?country.

Such a basic graph pattern can match with triples from the actual RDF database if
the triples are equivalent except for the variable which may be substituted with possibly
multiple results. When running above pattern over the Wikidata SPARQL endpoint,
it returns all triples where wd:Q72 is the subject and wdt:P17 is the property. In
our example graph pattern, the endpoint returns only one matching triple: wd:Q72
wdt:P17 wd:Q39.

Nevertheless, for a complete SPARQL query the prefixes as well as the particular
variable(s) that we want to be returned in the result need to be defined. Therefore, the
complete query for above graph pattern may be written as:

PREFIX wd: <http://www.wikidata.org/entity/> .
PREFIX wdt: <http://www.wikidata.org/prop/direct/> .
SELECT 7country
WHERE {

wd:Q72 wdt:P17 ?country .

2.2. WIKIDATA)

Of course, SPARQL provides functionalities for writing more complex queries. The
SPARQL W3C recommendation pageﬂ provides a list of those functionalities and pos-
sible query patterns. But even complex queries build up on the basis of finding triples
matching a specified graph pattern.

2.2 Wikidata

WikidataP]is the free collaborative knowledge base of the Wikimedia FoundationP} Since
its launch in October 2012, Wikidata has become one of the largest open data collec-
tions [Malyshev et al., 2018]. To make Wikidata applicable to data analysis and query
mechanisms, it follows the principles of Semantic Web technologies. As part of the Se-
mantic Web, Wikidata integrates data not only from Wikipedia but also many other
external sources resulting in a wide range of general and specific knowledge [Erxleben
et al., 2014]. At the current time, Wikidata contains over 65 million itemsﬁ and more
than 808 million statements]

Before discussing the data model, it is important to mention several design decisions
defining Wikidata [Vrandeci¢ and Krotzsch, 2014]:

» Open Editing and Community Control: The data as well as the schema of the data
itself are managed and controlled by the community.

« Plurality and Secondary Data: Often data can not be represented as the one
ultimate truth. There has to be the possibility that one statement was true only
for a certain range of time or we may want to store one or more sources to support
our statement. Wikidata has been designed to deal with such plurality.

» Multilingual Data: Wikidata is a multi-lingual project and supports over several
hundred different languages including dialects like Swiss German. While some data
values as numbers and coordinates are shared over languages, others as labels and
descriptions can be translated and displayed in any language supported by the
software.

» FKasy Access: Wikidata dumps are accessible in several formats including JSON,
Turtle and N-Triples. Therefore, the data can easily be used by external applica-
tions.

» Continuous Evolution: Since Wikidata is a collaborative project, it evolves contin-
uously with its growing community.

Yhttps: // www.w3.org/ TR/ rdf-spargl-query/

2https: // www.wikidata.org/ wiki/ Wikidata: Main_Page

3https: // wikimediafoundation.org/

Ahttp: // www.wikidata.org/ wiki/ Wikidata: Statistics) statistic based on snapshot from 2019-10-28
Shittps: // tools.wmflabs.org/ wikidata-todo/ stats.php), statistic based on snapshot from 2019-10-28

https://www.w3.org/TR/rdf-sparql-query/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://wikimediafoundation.org/
http://www.wikidata.org/wiki/Wikidata:Statistics
https://tools.wmflabs.org/wikidata-todo/stats.php

6 CHAPTER 2. WIKIDATA AND THE SEMANTIC WEB

2.3 The Wikidata Data Model

This section presents the Wikidata data structure and the way this data is represented
in RDF. Wikidata handles data about things/resources described by Wikimedia articles
such as Wikipedia, Wikivoyage, Wikisource, Wikiquote, or Wikimedia Commons. Its
main objective is to store the data and make it available in any language. An Item
defines what an article is about. There exist over hundred Wikipedia articles for the
item Zirich in several languages; in contrast to Wikidata which handles Zirich as a
single item supporting different languages and pointing with sitelinks to each of these
articles.

Each item gets supplied with various pieces of information forming the ItemDescrip-
tion. An ItemDescription contains some kind of basic information, normally sitelinks
to the corresponding page on a Wikimedia site. Furthermore, it consists of labels, de-
scriptions and aliases in diverse languages and a set of Statements about the item.
A statement is composed of a claim (e.g. Zirich has a population of 414,215) and a
list of references supporting that claim. Figure illustrates an example of a part of a
Wikidata item and its most important terms.

An essential part of an item are the aforementioned statements, they define detailed
characteristics and commonly consist of property-value pairs. In the Ziirich example,
population is the property and the value is a number. Properties store a PropertyDe-
scription which defines the datatype they may take as input for values. Possible data
types are strings, numbers, coordinates, other items or properties and time values. A full
list of all data types and their values is available on the Mediawiki pageﬂ As in RDF,
unique identifiers are used to determine entities like items and properties. Taking the
item from Figure Internationalized Resource Identifiers (IRIs) are used to declare
the Douglas Adams item as Q42 and the property educated at as P69. Nevertheless,
Wikidata differs to classic RDF datasets in making use of reification. RDF reification is
applied when there is the necessity to make statements about statements. In Wikidata,
this happens in the following cases:

» Statements may themselves be the subject of property-value pairs. Such additional
pairs are called qualifiers and are used to add context to a claim. In Figure
qualifiers add auxiliary information like start time, end time and kind of degree to
the main statement.

» Wikidata stores supplementary information to some data values. They can be
considered as compound objects. For example, time values not only store date and
time, but also precision, timezone and the type of calendar such as Gregorian.

» To support the claims made by statements, Wikidata provides the possibility to
store references. As can be seen in Figure references also may consist of
multiple property-value pairs specifying the provenance of the reference in question.

Wikidata solves the reification problem by using n-ary relations. N-ary relations
implement additional, intermediate nodes and therefore can capture relations between

Ohttps: // www.mediawiki.org/ wiki/ Wikibase/ DataModel

https://www.mediawiki.org/wiki/Wikibase/DataModel

2.3. THE WIKIDATA DATA MODEL 7

label ~Douglas Adams o) -, e
: identifier
— English writer and humorist
description Douglas Noél Adams | Douglas Noel Adams aliases
» In more languages
Statements
property Jeducated at | s |StJohn's College | s
end time 1974
academic major English literature quali fiers
academic degree Bachelor of Arts
start time 1971
rank 'V 2 references
stated in Encyclopzdia Britannica Online
reference URL http://www.nndb.com/people/731/000023662/ opened
original language of work English references
statement retrieved 7 December 2013
group publisher NNDB
title Douglas Adams (English)
+ add reference
s Brentwood School
end time 1970
start time 1959
P 0 references | col‘lapsed
| reference
+ add (statement)

Figure 2.2: Wikidata Item with Important Termsﬂ

more than two entities. Wikidata handles such complex relations by adding interme-
diate statement, value and reference nodes. About a tenth of all triples in Wikidata
are instantiations of just statement nodes, therefore leading to a significant amount of
overhead |Farber et al., 2017]. This shows that Wikidata extensively uses reification,
distinguishing it from many other openly available knowledge graphs.

Figure illustrates this approach. The statement in Figure claims that Ger-
many has a speed limit of 100 km/h. An additional qualifier specifies the context
of this limit narrowing down the validity of the main statement for paved roads out-
side of settlements. The simplest case in the illustration is wdt:P3086 (speed limit)
which connects the item Germany directly to a simplified version of the value (the
number 100). This way, properties with the namespace prefix wdt (which stands for
http://www.wikidata.org/prop/direct/) always behave like normal RDF triples return-
ing such simplified values with no context information.

As can be seen in both Figures and Wikidata also provides a statement rank
which is some type of built-in annotation. Ranks are important for filtering mecha-
nisms when more than one statement exists for one property. Ranks can be normal

"Source: |https: // www.wikidata.org/ wiki/ Wikidata: Introduction

https://www.wikidata.org/wiki/Wikidata:Introduction

8 CHAPTER 2. WIKIDATA AND THE SEMANTIC WEB

speed limit é 100 kilometre per hour Z edit

valid in place paved road outside of settlements

¢ 1 reference

wd:Q183 wdt:P3086
"Germany"
ps:P3086,
wds:Q183-... psv:P3086 (wdv:f7876...
(statement) (value node)
proviwas
$q:P3005 DerivedFrom

Figure 2.3: Wikidata Statement and its RDF Graph Representation [IMalysheV et al.,|

2015

(P3086 value again,
but converted into I"27.77..."std:decimal]
standard unit)

wd:Q182429
"metre per
second”

"100"*xsd:decimal

quantityAmount

quantityAmount
wdv:cd747...
(value node)

wd:Q23011975
'paved road outside of settlements”

quantityUnit quantityUnit

psn:P3086

wd:Q180154
"kilometre
per hour"

. (reference details
* not shown)

rank

(default), preferred or deprecated. Preferred ranks are commonly used to mark the
most up-to-date statement. The rank as well as qualifiers and references can be re-
trieved by following p:P3086 to the statement node. The statement node is declared
by the prefix wds (for http://www.wikidata.org/entity/statement/), the item identifier
Q183 and a Universally Unique Identifier (UUID) defined by Wikidata for every state-
ment. From the statement node, one can follow ps:P3086 again for a simplified version
of the value or psv:P3086 for the complete compound value. Depending on the type
of the value node (e.g. GlobecoordinateValue, TimeValue), corresponding properties
add the auxiliary information. In Figure a QuantityValue node further specifies
the quantityAmount as a decimal number of 700 and the quantityUnit as kilometre
per hour. A full list of all properties for value nodes is available onlineﬂ These value
properties belong to the OWL ontology of Wikibaseﬂ When following the statement
node to psn:P3068, a normalised version of the value can be accessed. The pq prefix
(for http://www.wikidata.org/prop/qualifier/) is further used to access the qualifiers.
In the example, pq:P3005 (valid in place) adds context information for the validity of
the main statement. Finally, through prov:wasDerivedFrom, one obtains the reference
node which further links to the reference details.

Next to property-value statements, Wikidata offers the possibility to create statements
that contain no value or some values. Statements with no value indicate that a value
simply does not exist (e.g. to state that a person has no children) and has not been
forgotten or left out. Statements with some values refer to statements that have a value
for a certain property, but the value is not specified or unknown (e.g. a person has an
unknown date of birth).

A statement with only one qualifier rapidly results in a comparatively complex RDF
graph as can be seen in Figure [2.3] The Wikidata data model produces graphs with

Shitps: // www.wikidata.org/ wiki/ Special: ListDatatypes
Ohttp: // wikiba.se/ ontology#

https://www.wikidata.org/wiki/Special:ListDatatypes
http://wikiba.se/ontology##

2.3. THE WIKIDATA DATA MODEL 9

many, often redundant, triples. Redundant triples arise for example for normalized
values. A normalized value may be stated with the psn: prefix after a statement node
and may occur a second time after the value node for property quantityNormalized.
Furthermore, for all intermediate nodes like statement, value and reference nodes, an
additional triple declares the type of these nodes. These data model design decisions
were made to simplify query mechanisms |Malyshev et al., 2018]. Therefore, a wide
range of queries are possible, from simple to complicated.

3

Graph Sampling

Graph or network sampling is a crucial part when dealing with large, real-world networks.
To analyze and create snapshots of the Wikidata knowledge graph, it is beneficial to
first extract a sample to deal with the massive data volume. The motivation behind
sampling is execution efficiency. In order to save resources such as time and memory, it
is computationally more efficient to further process a small, but representative sample
from the original graph.

In statistics, sampling methods are techniques used to select members out of a target
population group. A representative sample accurately reflects the characteristics of a
larger population. With a representative sample, one can draw conclusions from the
sample over the population. Appropriate estimations for the population can be achieved
if the sample size is large enough and members are randomly selected. Since networks
depend on two different elements (nodes and links), simple random selection may not be
suitable: many network properties depend on how nodes and links are interwoven [Lee
et al., 2006]. This node-link dependence makes graph sampling a challenging task.

There exist many papers presenting different approaches for reducing the graph size
while still obtaining a ”good” sample. Such papers not only differ in the sampling
algorithms but also in the way they define such a representative sample. This is not sur-
prising since graphs are characterized by many different properties. Being representative
can mean plenty of things depending on which graph metrics are of interest.

There is an important trade-off between the complexity of the sampling algorithm and
the complexity and size of the network |[Ahmed et al., 2013]. For example, one could
formulate the problem of sampling as a minimization problem to reduce the distance be-
tween the sampled and the original graph [Hu and Lau, 2013]. Such complex algorithms
can easily ruin our primary purpose of saving resources. Thus, simpler sampling meth-
ods are generally preferred over complex ones. This chapter discusses different sampling
techniques from recent years.

3.1 Classes of Sampling Algorithms

Sampling techniques can be categorized into two groups, namely random sampling and
topology-based sampling. Random sampling is based on either selecting nodes or edges
at random while topology-based sampling builds up on the existing topology of the

12 CHAPTER 3. GRAPH SAMPLING

original graph. This section gives an overview over both groups and introduces the most
common methods.

3.1.1 Random Sampling

In classic node sampling (NS), nodes are selected independently and uniformly at random
from the original graph G [Ahmed et al., 2013]. Therefore, for a fraction ¢ of nodes
required to be in the sampled subgraph Gg, each node is sampled independently with a
probability of ¢. After all the nodes V; are sampled, all edges among V; € G are added
to the edge sample set F, resulting in an induced subgraph.

In contrast to selecting nodes, one can as well select edges independently and uniformly
at random. Classic edge sampling (ES) makes use of this strategy [Ahmed et al., 2013].
Each time an edge is selected to be in G4, both nodes incident to that edge are included
in the sample as well. No additional edges are added to G5 than the ones chosen in the
random edge selection process. Hence, the resulting subgraph is only partially induced.

3.1.2 Topology-Based Sampling

Topology-based sampling methods start by randomly selecting a node and then recur-
sively visit one, some or all of its neighbors. This category can further be classified into
two subcategories: graph traversal techniques and random walks [Kurant et al., 2011].

In graph traversal techniques, nodes are visited exactly once, no encounter with pre-
viously sampled nodes is intended. The main difference between the algorithms of this
subcategory is the order in which they visit the nodes and the number of neighbors that
are selected to be in the sample. Breadth-First-Search (BFS) first visits all successor
nodes of the starting node, before moving onto the next level of depth. Depth-First-
Search (DFS) explores each branch to the greatest extent possible and first samples the
leaf nodes. Other examples of graph traversal techniques include Forest Fire Sampling
and Snowball Sampling.

In random walks, the next node to add to the sample is selected uniformly at random
among the neighbors of the current node. In contrast to graph traversal techniques,
random walks generally allow revisiting nodes. Therefore, random walks may try to
sample the same node more than once.

3.2 Discussion of Related Work

This section discusses different sampling strategies. An overview of related work is given
by Tables [3.1] to The papers summarized in the tables study the problem of network
sampling. Nevertheless, they differ in various aspects like sampling algorithms, against
which graph properties they compare the samples, as well as the type of networks itself.
It is therefore difficult to conclude which sampling technique provides the best results.
Still, papers generally agree on some sampling techniques to generate unsatisfactory
samples.

12

3.2. DISCUSSION OF RELATED WORK 13

Classic random sampling techniques suffer from numerous drawbacks. For example,
node sampling does not retain the properties of graphs with power-law degree distribu-
tions [Stumpf et al., 2005]. Also, it seems reasonable that the original level of connectivity
will be lost, since only edges between sampled nodes are kept. Edge sampling techniques
have similar limitations and fail to preserve many graph properties. Samples obtained
from ES result to be too sparse and have a bias towards high-degree nodes [Leskovec
and Faloutsos, 2006][Lee et al., 2006]. Considering these drawbacks, many researchers
have studied topology-based sampling methods. An advantage of such methods is the
generation of connected topologies, even when the sample size is very small. Differently
from random sampling, they take better into account the interdependence of nodes and
edges and they usually perform better than simple NS and ES. Therefore, the rest of
this section focuses mainly on related work for traversal-based sampling.

Breadth-First-Search has been widely used for graph sampling since it produces con-
nected samples and returns a full view of a particular region of the graph. Unfortunately,
BF'S is biased towards high-degree nodes and thus, BFS samples may underestimate low-
degree nodes by two orders of magnitude |Gjoka et al., 2010]. To correct the degree bias
of BFS, one of the papers proposes a correction procedure that leads to an unbiased
estimation of the degree distribution [Kurant et al., 2011]. Another drawback of this
technique is that the sample may have different topological features opposed to the graph
as a whole since only some small area is represented. In contrast to BF'S, Depth-First-
Search starts sampling from the last discovered node and as a consequence, samples
nodes from the periphery of the graph |[Doerr and Blenn, 2013|. This results in adding
leaf nodes with low degrees first into the sample. Hence, this algorithm drastically un-
derestimates the average node degree. Random-First-Search (RFS) is an alternative for
BFS and DFS. RFS randomly selects the next node from among the list of discovered,
but not yet sampled nodes. This method is quite similar to a random walk without
revisiting and has been shown to perform better than its two relatives [Doerr and Blenn,
2013].

A variant of BFS is Snowball Sampling (SBS). According to the classic definition by
Goodman, SBS is similar to BFS. But in contrast to BFS which samples all neighbors
of a node, SBS randomly samples exactly a fixed fraction of n neighbors [Goodman,
1961]. If these neighbors have not been visited before, they are added to the queue to
process next. SBS has been a popular method in sociology studies for research on hidden
populations [Hu and Lau, 2013|. This is due to the fact that every person (node) can
name a number n of his friends (neighboring nodes) in an iterating fashion. Thus, one
obtains a sample of people with similar interests useful in such studies. Similar to BF'S,
this sampling method retains the network connectivity. Shortcomings of SBS are the
negative trait to pick hubs (nodes with degrees greatly above average) in short intervals
and the boundary bias. Last mentioned bias results from the problem that the nodes
sampled on the last round are missing a large number of neighbors |Lee et al., 2006].
Mostly affected from this boundary bias is however BFS since it samples all neighbors
for each node. Respondent-driven sampling (RDS) is an approach to overcome these
biases and supplies SBS with a correction procedure [Heckathorn, 1997).

Forest Fire Sampling (FFS) makes use of a partial BFS as well as it samples only

13

14 CHAPTER 3. GRAPH SAMPLING

a fraction of neighbors. The algorithm starts by randomly selecting a starting node
and then ”burning” a random number of its outgoing edges. The edges together with
their incident nodes are added to the sample and the process continues recursively.
Leskovic and Faloutsos showed that FFS yields good samples that accurately match
many properties of the original graph [Leskovec and Faloutsos, 2006]. The random
number of edges to be burned at each node is generated by a geometric distribution
with mean py/(1 —py). For best results, the authors suggest 0.7 as a value for py which
results in an average of 2.33 sampled edges per node.

The most popular and simplest version of random walk topology-based sampling meth-
ods is Random Walk Sampling (RW). RW is basically working like SBS, but with n = 1.
Therefore, at each node only one outgoing edge with its incident node is sampled. Some
papers additionally include a fly-black probability. With this probability, a neighbor is
visited only with a certain probability or else, the initial node is visited again, there-
fore allowing to sample more neighbors. A typically used fly-back probability is 0.15
[Leskovec and Faloutsos, 2006]. However, in contrast to SBS, RW can visit edges and
nodes again whereas SBS does not allow revisiting. A drawback of RW is the bias towards
high degree nodes and densely connected parts of the graph [Leskovec and Faloutsos,
2006)[Gjoka et al., 2010].

Metropolis-Hastings Random Walk (MHRW) was designed to avoid this high-degree
bias. It modifies the probabilities to move to a neighbor to achieve a uniform degree
distribution. Initially, it starts like Random Walk by selecting the next candidate node
w uniformly at random from among the neighbors of node v. Then, a uniformly random
number 0 < p < 1 is generated. If p < j:gg::z, then w is the next node to be in the
sample. Otherwise, w is rejected and the algorithm stays at v giving other incident
nodes a chance to be selected. This way, a neighboring node with a lower degree than
the current one will always be sampled and some of the nodes with higher degrees are
rejected. Hence, samples generated by MHRW lead to very accurate degree distributions
|Gjoka et al., 2010].

Gjoka et al. further propose Re-Weighted Random Walk (RWRW) which is supposed
to lead to accurate estimations of degree distributions as well. This method is not further
considered here as it consists simply of a Random Walk with a subsequent correction pro-
cedure. Since MHRW rejects sampling many neighboring nodes, it only slowly diffuses
over the network which consecutively may result in poor estimation accuracy |Lee et al.,
2012]. Lee et al. therefore came up with another sampling method called Metropolis-
Hastings algorithm with delayed acceptance (MHDA). Normal MHRW may return to
nodes it has already visited before. MHDA remembers the previous nodes and increases
the probability to move to one of the other neighbors. MHDA is supposed to lead to
unbiased graph sampling and smaller variance than MHRW at almost no additional
costs.

Another version of a random walk based algorithm that may eliminate the bias of RW
is Frontier Sampling (FS). FS first samples m randomly selected seed nodes. From the
list of seed nodes S, a node v is selected with a probability of P, = deggz;ee One of
the outgoing edges of v is then selected uniformly at random and %udes t

d together with
its incident node w to the sample. The set of seed nodes S gets updated by replacing

14

3.2. DISCUSSION OF RELATED WORK 15

v with the newly sampled node w and the process continues by selecting the next node
out of S. FS estimates have shown to be consistently more accurate than those of RW
and furthermore, FS is expected to maintain robust in the presence of disconnected or
loosely connected components [Ribeiro and Towsley, 2010]. Wang et al. as well proved
in experiments that both FS and MHRW keep the degree distribution well. But in
contrast to the statement of Ribeiro and Towsley, they conclude that FS (as well as
MHRW) works better for tightly connected graphs [Wang et al., 2011].

Krishnamurthy et al. take a completely different approach to generate a graph sample.
They use reduction techniques to not destroy already existing graph properties. The idea
is to delete edges or nodes or to contract two incident nodes and therefore ending up
with a removed edge and a merged node. Among the examined methods, DHYB-0.8
performed best [Krishnamurthy et al., 2005]. This algorithm removes with a probability
of 0.8 a random edge incident to a randomly selected node or, with a probability of
0.2 removes a randomly selected edge. Unfortunately, the authors only received good
results for reducing the size of the graph up to 70% in terms of nodes, whereas Leskovic
and Faloutsos were able to generate samples that properly matched the properties of the
whole graph for sample sizes down to 15%.

A promising sampling method belonging to the family of random sampling is called
totally induced edge sampling (TIES) |[Ahmed et al., 2013|. Initially, TIES chooses
uniformly at random edges and adds the nodes incident to them to the sample. Next,
for all edges from the original graph, it checks if its incident nodes are already sampled.
If this is true, then it adds that edge to the sample. Therefore, the sample contains
all possible edges between the nodes sampled in the initial phase. The authors claim
that every graph sampling method naturally produces subgraphs with underestimated
degrees since only a subset of a nodes neighbors may be collected. They refer to this
as the downward bias. Since edge sampling results in a bias towards high degree nodes,
Ahmed et al. conclude that this upward bias helps to offset the downward bias of the
sampled degree distribution. A problem of edge sampling nevertheless is the missing
connectivity of the sample. The TIES second step, the induction, helps to recover much
of the connectivity and therefore increasing the local clustering in the sample. Ahmed
et al. were able to produce good sampling results with TIES, outperforming even FF'S.
Indeed, one of the main advantages of TIES is that it samples the network sequentially.
Since many graphs do not fit into main memory, sampling from large networks requires
many random disk accesses which may lead to high I/O costs. Unlike topology-based
methods, TIES does not have to explore a nodes neighbors and therefore leading to huge
amounts of disk accesses. The sequential fashion in which TIES samples a graph is much
more cost-saving and may therefore be a suitable sampling algorithm for large networks.

The discussion of related work shows that many different algorithms have been studied,
but there is a lack of a fair comparison between them. The decision on how to sample a
graph finally depends on the specific application and what requirements to the sample
are necessary.

15

CHAPTER 3. GRAPH SAMPLING

16

Reference [Doerr and Blenn, 2013] [Leskovec and Faloutsos, [Gjoka et al., 2010|
2006]
Sampling Breadth-First-Search (BFS), Random Edge Sampling (ES); RW, BFS, Metropolis-Hastings
Algorithm(s) Depth-First-Search (DFS), Random Node Sampling (NS); Random Walk (MHRW),
Random-First-Search (RFS), all | Exploration: Random Walk Re-Weighted Random Walk
without revisiting (RW), Random Jump (RJ), (RWRW)
Forest Fire (FFS)
Algorithm 100 random starting nodes Exploration: random starting 28 uniformly random initial
Input node; FF: burning probability nodes

Network Type
Graph Proper-
ties/Metrics

analyzed

Discovered
Bias

Findings

Social Network

Assortativity, Avg degree,
Correlation, Diameter, Density,
Power-law exponent

BF'S overestimates high-degree
nodes while DF'S underestimates
them. This results also in a bias
for density and power-law
exponent.

BFS and DFS generally perform
poorly. Good estimates are only
held for sample sizes of more
than 20-30% of the full network
size. RFS performs significantly
more accurate and converges to
the correct value faster.

Large networks, directed

Full set of graph properties
containing 9 different distribu-
tions and 5 single measures

RW, RJ are biased towards
high-degree nodes and densely
connected parts. The slope of
ES degree distribution is too
steep, samples are sparsely
connected.

FFS generally yields good
samples (with burning
probability of 0.7). Good
samples that match the
properties of the real graph are
obtained for sample sizes down
to 15%.

Social Network, undirected

Node degree, Relative size of
sampled nodes from specific
region to actual region size

BFS and RW are biased towards
high degree nodes and under-
estimate low-degree nodes by
two orders of magnitude. BFS
densely covers only some specific
region.

The authors find that MHRW
and RWRW perform very well,
they estimate the two
distributions of interest almost
identically to the true uniform
sample they used to validate the
samples against.

Table 3.1: Sampling Methods studied by Related Work.

16

17

3.2. DISCUSSION OF RELATED WORK

"NIOA\ PoIRY Aq parpnis spoyjey Surdueq :g°¢ o[qe],

"a[qeins oae

SN pPue S [10q ‘}soIojul Jo ST
Ay1a1gR)I0SSR J1 o[dwexe 10 Ul
pojsoroqur oxe om Ajrodoid o)
uo Surpuadap UdsoyD 9q PInoys
poyjew Surjdures y ‘[RIoU3

Ul SYIOM)OU 991J-88IS I0J P[OY
09 WS dAO(R PIje)S saselq oY J,

"A1ATYR)IOSSR OS[R pUR sjuauodxo

D¢ pue 92139p So)RMIISIOPUN
QS JUSIOe0d SULIAISN[D
sejewI)saIopun A[[euoIjippe
Qi "syueuodxe D¢ pue 92139p

9)RIITISOIOAO T[10q SH PUR SN

JUSTOIFO0D FULIDISN])
‘Ay1aTyRYI0SSY ‘Uasuel yjed SAy
‘uornquystp (D) Ayeriusd
SSoUURaM)d(PUR 93139(]

pajoaIIpun
‘SYI0MIOU PIIOM-[RII ‘991J-9[RIG

apou

Sur)IR)s pajosfes A[uopuel :Gqq
(sds)

Surdureg [reqamoug ‘SN ‘S

1900z ‘e 90 997] |

‘onyea
ONI) oYY} 09 I9)se] SUISIOAU0D
Sq Uy sydersd pojoouuod
A3ty ur 10939q wrrojred
Spoyjew Yj0q ‘JUSIOFe0d
SULIISND SUIPILTOY “UOIIN(
-LI}SIp 90130p opou oY) Jurdoody
ur [(oa wroyred g pue MYHIN

“JUSIOJO0D SULIDISTI[O OFRIOAR
Io8Ie[B SPIRMO) POSRIQ OS[e SI
SAg ‘010joIay], "99I139p opou o1}
uo spusdop A[SUOIIS JUSIOLYFO0D
SULIISN]) "SOPOU 99139P-Y3IY
spremo} paserq st S iq

JUSTOTFO0D
SULIDISN[) ‘UOTINLIISIP 99I39(]

Po32IIp
‘SYIOMJOU TRID0S d[eIS-oFIer]

(S 107 905 ®

‘MUHIN Pue Sd [oes 10j ou0)

9POU Pads Poajod[as AOPURY]

S ‘MMHIN ‘SAd

[1T0Z ‘1@ 70 Suem] |

‘sqpuouodurod

Pa109UT0d A[9S00[/Pa)oautiodsIp
09 9snqoi st G -serpredord
yderd pouorjuowr oroqe

oY} SUI)ewI}So Ul Y[eA\ WOPURY
surI0f1edIno AJJua)sSISuod

Sd ey} moys sjnsoy

‘qders ofoym o1} Jo 89S0}
woay IogIp sorpredord asoym
yderdqns e opisut poddery,,

108 Avwl Sy[RA\ WOpURY
‘pe3oeut0D A[9S00]/PajoeutodsIp
ST ydeis [eUISLIO UL A\

JUDIOJI0D
SuLLISN[) ‘TOMNINSIP
99189(] ‘ATATIR)IOSSY

S9GPd PUR SOOILIOA PIfoqe] iim
‘PagoalIp ‘syromiau xo[duo))

sepou
Sur)Ie)s WopURr ATULIOJTUN W

(sg) Surdureg Io19uU01]

s3urpurq

seld
Pa12A02s1(]

pozATeue

SOLI)OIA[/So19
-1odoag ydeixn

adAT, jjromiaN

mndufg
w08y
(s)wyyra08Ty
Surdweg

| lo10z “4ersmog, pue oxtoqry]

SIS JVESNECAEC) |

17

CHAPTER 3. GRAPH SAMPLING

18

Reference

[Ahmed et al., 2011]

Sampling
Algorithm(s)

Algorithm
Input
Network Type

Graph Proper-
ties/Metrics
analyzed

Discovered
Bias

Findings

edge sampling (TIES)

FFS: Randomly selected seed
node

Real-world networks,
undirected, sparse

Degree distribution, Path
length, Clustering coeflicient,
Size of connected components

ES is biased towards high-degree
nodes. NS results in too
sparsely connected nodes. Any
sampling algorithm naturally
underestimates the degrees in
the degree distribution (since
only a subset is sampled).

TIES generally outperforms the
other algorithms. The upward
bias from the edge sampling
process offsets the downward
bias of the sampled degree
distribution. The induction step
helps to recover much of the
connectivity in the sample.

ES, NS, FFS, totally induced

| [Krishnamurthy et al., 2005] |

Deletion and contraction
methods

Internet topology graph,
undirected

Average degree and deviation,
Degree distribution, Spectral
analysis

The authors claim that with
such graph reduction methods
they do not destroy existing
graph properties, in contrast to
constructive methods which
have to reproduce the original
properties.

DHYB-0.8 (remove random edge
incident to randomly selected
node with probability 0.8, else
remove random edge) performs
best among the examined
methods. Good results were
obtained by reducing the graph
up to 70% in terms of nodes.

| [Lee et al., 2012]

MHRW with delayed acceptance
(MHDA)

Randomly selected seed node

Real-world networks, undirected

Degree distribution, Largest
connected component

Normal MHRW can get stuck at
a node and therefore only slowly
diffuses over the space. This
behavior can lead to a reduced
estimation accuracy.

MHDA is supposed to lead to
unbiased samples while also
achieving higher sampling
efficiency than MHRW.

Table 3.3: Sampling Methods studied by Related Work.

18

4

Requirements

This chapter gives an overview of what the framework should be capable of. The fol-
lowing sections analyze the requirements for each of the tasks of sampling, creating
the snapshots and of displaying the results. The keywords "MUST”, "MUST NOT”,
"REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”, ”RECOM-
MENDED”, "MAY”, and "OPTIONAL” used for the requirements can be interpreted
as described in RFC 2119 [Bradner, 1997].

4.1 Requirements for Sampling

Because of the sheer volume of the Wikidata knowledge graph, the framework imple-
mented during this thesis is based on sampling. Processing the whole knowledge graph
would result in requiring huge amounts of resources like memory and time. Conse-
quently, researchers rely on sampling techniques to study smaller subgraphs that have
similar properties as the graph they were derived from.

As discussed in Chapter [3, sampling from large graphs is possible in various ways.
There is no perfect solution, but one can conclude some appropriate approaches from
related work. For example, topology-based sampling methods result in better (e.g. in
terms of connectivity) samples than random edge or node sampling and should therefore
be preferred (see Section . Regarding the sampling process, the framework focuses
on the following requirements:

+ RS-1: The framework MUST extract a sample set of nodes and edges out of the
Wikidata knowledge graph.

« RS-2: The sample set MUST be connected. Hence, the number of connected
components in the sample must be one.

+ RS-3: The framework MUST take into account constraints the user sets on the
graph sampling. These constraints include the number of vertices to be in the
sample and the setting of a seed node from where the sampling algorithm starts
collecting further nodes and edges.

20 CHAPTER 4. REQUIREMENTS

* RS-4 The framework MAY take as input two seed nodes that create overlapping
samples and therefore are connected. This requirement includes finding a path
between the seed nodes.

« RS-5: The framework is RECOMMENDED to create samples having similar
graph properties as the graph they are derived from.

* RS-6: The system SHOULD give the user a choice among several sampling tech-
niques to choose from.

4.2 Requirements for Creating Snapshots

After collecting a connected subgraph sample from Wikidata, the actual core function-
ality of the framework consists of building snapshots. In this stage, a current sample
version is available and the framework has to create previous versions of that sample
graph. Hence, it has to access revision data and undo the changes generating a series of
snapshots while going back in time.

Wikidata offers possibilities to get old versions of the Wikidata knowledge graph. For
example, it makes old versions of the whole data dumpsF_] available. Though, these dumps
are not available at regular intervals. Wikidata also provides a SPARQL endpoint to
query the Wikidata edit historyﬂ This history query service allows to query the full state
of the Wikidata knowledge graph after any revision. However, we are not interested in
getting snapshots of the whole graph but only from our sample graph in order to save
resources. Besides, this query service only offers data from the creation of Wikidata in
2012 until July 1st 2018.

What the framework needs to create those snapshots is the actual revision data of the
triples in the sampled subgraph. It could request this revision data from the Mediawiki
APIﬂ The framework created during this thesis, nevertheless, accesses the revision data
from a database provided by the Dynamic and Distributed Information Systems Group
(DDIS). The following requirements refer to the process of creating snapshots:

« RC-1: The framework MUST take into account constraints that the user sets on
the graph. These constraints include the number of changes in each snapshot and
a timestamp until when to create the snapshots.

« RC-2: Each snapshot SHOULD be equipped with a time interval pointing out the
range of time in which these changes applied or in which that snapshot was valid.

« RC-3: The framework MUST implement the undoing of changes in the correct
order. In this way, historic versions of the graph can be reconstructed with high
precision.

Yhttps: / / www.wikidata. org/ wiki/ Wikidata: Database_download# Old_JSON _and_RDF _dumps
2hitps: // www.wikidata. org/ wiki/ Wikidata: History_Query_Service
3https: // www.mediawiki.org/ wiki/ API: Revisions

20

https://www.wikidata.org/wiki/Wikidata:Database_download##Old_JSON_and_RDF_dumps
https://www.wikidata.org/wiki/Wikidata:History_Query_Service
https://www.mediawiki.org/wiki/API:Revisions

4.3. REQUIREMENTS FOR DISPLAYING THE RESULTS 21

* RC-4: The framework MUST handle the undoing of changes correctly. Therefore,
it must implement different undoing events (e.g. creating a statement, removing a
statement, updating a value) accurately.

4.3 Requirements for Displaying the Results

After having created the historic snapshots of the Wikidata sample graph, they have to
be presented to the user in a reasonable way. The following bullet points list up the
requirements regarding this issue:

« RF-1: The framework MUST return the current sample and the corresponding
snapshots in a standard RDF format. There SHOULD be several formats available
to possibly choose from.

« RF-2: The framework SHOULD offer the possibility to return the results in a
format natively supported by NetworkX. The chosen format SHOULD NOT loose
any data or information during the transformation process.

21

5

Implementation

With the knowledge about related work on sampling techniques, the way Wikidata
structures its data in RDF and the requirements defined in Chapter @, we can move
forward to the practical realization of the framework that creates snapshots of sampled
Wikidata knowledge. This chapter starts with an overview over the framework, before
explaining each part of it in the following sections.

5.1 Framework Overview

The framework addressed in this thesis extracts a sample out of the Wikidata knowledge
graph and creates snapshots of that sample by going back in time and undoing revisions.
Figure displays a diagram with the data flows necessary to fulfill these tasks.

First, the user must feed the application with all the necessary information. This
includes the choice of a specific sampling technique, the size of the sample in terms of
the number of nodes, a seed node from where the sampling technique starts, a past
timestamp until when to create the snapshots, the number of changes in each snapshot
and finally, the output format as well as the database credentials. All this information
can be entered or changed in the framework’s configuration file named config.ini.

Provided with these details, the framework accesses a MySQIE database made avail-
able by DDIS. This database stores the Wikidata data as triples with an ID for each
subject, property and object. Such a database schema makes it relatively straightfor-
ward to sample a subset of the knowledge graph with traversal-based methods. Simply
get the current node, in this case the current subject, before selecting randomly a certain
number of its neighbors, the objects. The sampling is done with the help of NetworkXEL
a Python package for the creation and manipulation of networks. Sections to will
address the topic of sampling with NetworkX in more detail.

After having collected the nodes and edges belonging to a connected Wikidata sample
graph, the historic snapshots must be generated. This is the actual core process of the
framework. For this task, the university provides a database which stores the Wikidata
revision data. The revision data is retrieved for each subject, property tuple in the

Uhttps: // www.mysql.com/
2https: // networkz. github.io/

https://www.mysql.com/
https://networkx.github.io/

24 CHAPTER 5. IMPLEMENTATION

ransformin
RDF output files from the snapshots NetworkX

versions to
RDFLIB

Snapshot versions
of sampled subgraph

Y
User input Sampling Sampled subgraph @ting

User with > snapshots
NetworkX P
I~ A I~ A
Wikidata Wikidata

Data Revision
Data
Y
MySQL Wikidata PostgreSQL Wikidata

Database Revision Database

Figure 5.1: Data Flow Diagram of Framework

sample from this database. Therefore, the framework can undo the changes for each
triple by going back in time and ending up with several snapshots of what the knowledge
graph sample looked like back then. This part of the implementation is explained in more
detail in Section [5.5

The last part of the framework addresses the formatting of the output which are the
initial sample and its following snapshots. The output must certainly be returned in
a standard RDF format. This can be done by transforming the sample graph from
NetworkX to RDFLibEL a Python package for working with RDF. With RDFLib it is
possible to serialize the graph data into various formats. Section describes further
how data is represented by RDFLib and which formats to return RDF documents the
framework supports.

5.2 Sampling Prerequisites

This section addresses the prerequisites for the sampling part of the framework. Section
introduces NetworkX which is used by the framework for the actual sampling

3https: // github.com/ RDFLib/ rdflib

24

https://github.com/RDFLib/rdflib

5.2. SAMPLING PREREQUISITES 25

directed | multiple edges
Graph()
DiGraph() v
MultiGraph() v
MultiDiGraph() v v

Table 5.1: NetworkX Graph Types

process as discussed in Section The schema of the database from which the Wikidata
data is retrieved is discussed by Section [5.2.2

H.2.1 NetworkX

The framework is written in the PythonE] programming language. Therefore, the usage
of NetworkX, a Python package for creating and manipulating networks, comes handy
when dealing with graph sampling. Apart from that, NetworkX also provides algorithms
to study various graph properties for graph analysis. To generate and store the Wikidata
data, the framework first creates an empty NetworkX graph with no nodes an no edges.
The package provides different types of graphs. Table lists these four types according
to the two properties they differ.

The framework must certainly store the data in either DiGraph or MultiDiGraph since
the direction of the edges is crucial when working with RDF data. These two directed
types of graphs offer additional functions specific to directed edges such as calculating
the in- or out-degree or getting the predecessor or successor of a node. MultiGraph or
MultiDiGraph allow to add more than one edge between any pair of nodes. In Wikidata,
multiple edges between subject and object nodes are possible which is why it is logical to
initialize a MultiDiGraph for doing the sampling. Unfortunately, there is one drawback
when working with NetworkX graphs that are directed and/or allow multiple edges:
many of the algorithms provided by NetworkX are not defined for these types. This
includes for example calculating the number of components or the clustering coefficient.
Nevertheless, it is possible to convert MultiDiGraph into the undirected standard Graph
when analyzing of such properties is of interest.

Having initialized a NetworkX MultiDiGraph, the sampling can start by adding nodes
and edges to it. NetworkX allows nodes to be any kind of hashable objects. This
prerequisite is fulfilled since nodes will be filled with objects of type string. Nodes and
edges are added to the MultiDiGraph using the NetworkX functions add_node() and
add_edge() to add one node at a time or add an edge between two nodes specified as
parameters. Additionally, it is possible to add attributes to them. This is necessary
since the type (e.g quantity, globecoordinate, time) or the language tag of the object
must be stored as well to be able to transform the sample graph into a standard RDF
format with corresponding namespaces and language tags later on.

Uhttps: // www.python.org/

25

https://www.python.org/

26 CHAPTER 5. IMPLEMENTATION

5.2.2 MySQL Database Schema

For the sampling part, the framework accesses Wikidata knowledge stored on a DDIS
MySQL database server. MySQL is an open-source relational database management
system. Figure [5.2] shows the schema of the database used for extracting the samples.

obj_id int sub_id int sub_id int
obj_text varchar prop_id int sub_text varchar
obj_count int obj_id int sub_count int
type_id int sub_exclude int
lang_id int

dict_prop

lang_id int type_id int prop_text varchar
lang_text varchar type_text varchar prop_count int
lang_count int type_count int prop_count_dist int

Figure 5.2: MySQL Database Schema for Retrieving Wikidata Knowledge

The data is stored in a structure called dictionary tables. The table called triple stores
the Wikidata data in triple form with subject, property and object similar to RDF. But
it stores each of them with identification numbers. Therefore, one has to query the tables
dict_sub, dict_prop and dict_obj with the corresponding id to get the actual content for
each subject, property and object. The contents are stored for every table in the column
ending with 7 _text”.

The table dict_sub consists not only of Wikidata items but also of properties since
properties as well can be the subject of Wikidata triples (e.g. for defining a properties
constraints). Statement nodes, the ones beginning with an item identifier such as Q183
followed by a UUID, are not contained in dict_sub. This results in having no information
about qualifier statements or references supporting a statement.

The table containing all the properties called dict_prop contains only properties of
the P-type, as for example P31. Therefore, only the properties defined in the Wikidata
property namespaceﬁ are available. Properties referring to other namespaces outside of
Wikidata like labeﬂ or descriptiorﬂ are not stored in dict_prop.

Shttps: // www.wikidata.org/ wiki/ Wikidata: List_of _properties
Snamespace: http: //www.w3.org/ 2000/ 01/ rdf-schema#
"namespace: http://schema.org/

26

https://www.wikidata.org/wiki/Wikidata:List_of_properties
http://www.w3.org/2000/01/rdf-schema#
http://schema.org/

5.3. SAMPLING PROCESS 27

Dict_obj refers to the table that consists of additional information for the object IDs.
Objects can have one of six different type_ids which are again specified further in the table
dict_type. These types are strings, wikibase-entities, quantity, globecoordinate, monolin-
gualtext and time. Objects of type monolingualtext also contain a lang_id referring to
the table dict_lang which specifies the language tags.

This database schema forms the initial situation for the actual sampling process which
is discussed in Section [5.3] Following from the description of the schema, the database
contains only direct statements for properties defined in the Wikidata property names-
pace. Taking again the Wikidata statement from Figure the database stores only
the triple Q183-P3086-"100” " "xsd:decimal, and statement nodes are not part of this
MySQL database.

5.3 Sampling Process

This section addresses the frameworks first task: the extracting of a sample out of the
Wikidata knowledge graph.

Towards sampling, the most important requirement is the extraction of a graph sample
that is connected. Hence, sampling techniques like random node or edge sampling are
not suitable. First, they do not sample connected graphs and second, they have been
shown to produce samples which fail to preserve many graph properties (as discussed in
Section . Due to these limitations and the requirement of getting connected samples,
topology-based sampling methods are optimal for the sampling part of the framework. I
chose several of these sampling algorithms for implementation. Among the selected ones
are BFS, FFS, SBS, RFS, RW and MHRW.

This section explains the sampling process based on a more detailed description of
FFS in Section and MHRW in Section [5.3.3] FFS serves as a representative of
traversal-based methods, whilst MHRW takes this position for random walks. But first,
Section clarifies the general process of adding a neighboring node with its edge to
the sample graph.

5.3.1 Sampling a Neighboring Node and Edge

Nearly all topology-based sampling methods have in common that they move forward to
a neighboring node, or rather a successor node (since the Wikidata graph is directed),
of a current node. The successor and the edge leading to it are sampled and the current
node will now be one of previously sampled successor nodes to continue this process.
Because all of the algorithms applied in the framework share this idea of adding successor
nodes, Figure summarizes this process.

While sampling neighboring nodes of a current node, the framework first sends a query
to the table triple with the subject_id of the current node. Depending on the algorithm,
all or a certain number of (random) triples are returned. The objects of these triples
represent the neighboring nodes of the current subject node. Nevertheless, since the table
triple stores only IDs referring to other tables containing the actual values, we need some

27

28 CHAPTER 5. IMPLEMENTATION

sd add_neighbor_with_property(triple, sample_graph,
processing_stack, current_node)

:Framework :Database

— get_predicate(predicate_id)

return predicate_text
< """"""""""""""""""""""""""""" —
get_object(object_id) - :
return object_text, object_tye, object_lang
alt [if object_type == 2] :
sample_graph.add_node(object_text) H
|: get_subject_id(object_text) o :
< return subject_id of object U

[if object_type == 5]
get_language(object_lang)

return language U
< ..

Figure 5.3: Sequence Diagram of Sampling a Neighboring Node with Property Edge

28

5.3. SAMPLING PROCESS 29

more information to add such a successor node with the corresponding property edge to
the sample. As can be seen in Figure the framework has to query first for the actual
values for the property as well as the object. For the property, the method returns just
the property text. For the object, it returns as well the object text but also object type
and, if available, object language. Then, the add_neighbor method takes into account
the object type and differentiate between six ways to handle the adding of the object to
the sample graph.

When the database returns for the object type 5, the object is of monolingualtext
type. For such types the framework sends a query to the table dict_lang to get for the
language id the corresponding language tag. After the tag is known, the object can be
added to the sample with an additional attribute ”lang” for the language tag. Object
type number 8 corresponds to type quantity, 4 to type globecoordinate and 6 refers to
type dateTime. For these three types, the system needs no additional query. It is enough
to just add the node to the sample graph and pass along the data type via the datatype
attribute in the add_node method. If the object type is 2, then the object is an entity
such as an item or a property. Only objects of this type can be future subject nodes and
be processed for their successor nodes. All the other node types are sink nodes, meaning
that they do not possess any outgoing edges. Therefore, the algorithm only adds entity
nodes to a stack from which it pops off the next node to continue the sampling with.
Also, for such nodes, the framework needs to send another query to the database: this is
because the id of an entity is not the same for subject and object. Hence, a query which
looks for the subject_id in the table dict_sub with the object text equal to the subject
text is necessary.

The last else clause displayed in Figure refers to objects containing simple strings.
They can just be added to the sample graph with no additional attribute values. Finally,
this method adds the edge to the sample by setting parameters for current node, successor
node and the type of property as an attribute called "key”. This way, the key attribute
not only stores the type of the property but also distinguishes multiple edges between a
pair of nodes.

5.3.2 Forest Fire Sampling

Figure shows the sequence diagram of the Forest Fire sampling method. The algo-
rithm takes as input a seed node and the number of nodes to be in the sample graph.
Then, it initializes a NetworkX MultiDiGraph and retrieves the id of the subject from
the database. Furthermore, it adds the seed node to the MultiDiGraph and a list called
processing-stack. The FFS method enters a while-loop which stops when the sample
contains enough nodes. From the processing_stack a node is popped off to be the next
node to collect successor nodes from. The processing_stack works like a First-In First-
Out (FIFO) queue. This way, the algorithm ensures that nodes detected first are also
processed first. As discussed in Section FFS samples only a fraction of neighboring
nodes. It generates this fraction from a geometric distribution as proposed by Leskovic

29

30

CHAPTER

5. IMPLEMENTATION

sd forest_fire_sampling)

Database

i ForestFire

enter seed_node,
number_of_nodes ' !

1

! initialize NetworkX i
) MultiDiGraph() '

get_subject_id(seed_node)

. return sub_id u
) [EEemniednaiaradnis et s s

processing_stack append(seed_node)
sample_graph.add_nocde(seed_node)

; loop [len(sample_graph nodes()) '
: < number_of_nodes] '
' alt .]
i ———| |[if len(processing_stack) > 0] i
3 current_node = processing_stack.pop(0) 3
- [generate random geometric number !
i get random geometric number of triples & i
3 return triples

: [Crmmmmmmmmmmmmomom oo ‘
i loop]
] [for each triple] :
3 add_neighbor_with_property(triple) 3
: [(see figure 5.3) :
3 [else] get random triple with an entity object from one i
: of the already sampled nodes y
! return triple U
: [mmm s

3 add_neighbor_with_property(triple) 3

return sample_graph

e e e e :

Figure 5.4: Sequence Diagram of Forest Fire Sampling

et al. To do so, the framework uses the Python package NumPyﬁ which provides the
feature numpy.random. geometm’ﬂ to draw samples from a geometric distribution. The
framework then queries for that generated number of random triples with the subject id
equal to the current node id that is being processed. In a for-loop, each of these triples
is then passed to the add_neighbor_with_property function as explained in Figure [5.3
Therefore, the algorithm adds for each subject node a geometrically generated amount
of neighbors to the sample with their corresponding property edges. If the successor node

Shitps: // numpy.org/
https: // docs.scipy.org/ doc/ numpy-1.15.0/ reference/ generated/ numpy.random.geometric. html

30

https://numpy.org/
https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.random.geometric.html

5.3. SAMPLING PROCESS 31

is of type entity, it will get pushed to the processing_stack to eventually be processed in
a later loop as subject node to collect neighbors from. Unfortunately, since many nodes
in the Wikidata knowledge graph are not entity nodes like items or properties, the ”fire
may go out”, meaning that no further entity nodes are available on the processing_stack.
To handle such cases, I modified the original FFS algorithm and added an alternative
clause: if processing_stack gets empty, the algorithm searches in the database for a triple
with an already sampled subject node and an object that is an entity object not yet sam-
pled. This way, the processing_stack is filled again, the sample graph stays connected
and the algorithm traverses the network in a yet unexplored direction.

5.3.3 Metropolis-Hastings Random Walk

To also illustrate a random walk based sampling algorithm, Figure shows a sequence
diagram of the MHRW method. This method starts similar like FF'S with a user entering
a parent node from where the walk starts and the number of nodes to be in the sample
graph. Then, it initializes a NetworkX MultiDiGraph to be the sample graph and queries
the database for some more information about the parent node. This includes the id and
the degree, as well as the triples containing neighbors of the parent node. The MHRW
algorithm adds the parent node to the sample graph and the triples to neighbor_list, a
list that contains all the triples with subject id corresponding to the node id of the node
from where the next neighboring node will be sampled. The algorithm then enters a
while-loop until the number of nodes in the sample is smaller than the number of nodes
as specified in the configuration file. If there are triples in the neighbor_list, randomly
select one of them and get the neighboring child node information from the database with
the help of the object id. The information to be returned includes the actual content,
the type and the degree. Furthermore, the method generates a random number between
0 and 1. If such a random number is smaller than the minimum value of either 1 or the
division of the parent degree by the child degree, then the algorithm adds the child node
with its corresponding property edge to the sample. Like this, neighboring nodes with
a smaller degree than the parent node are always sampled and some of the nodes with
higher degrees are rejected. This is the actual core idea of the MHRW to correct the
bias of samples towards high degree nodes. If the neighboring node added to the sample
is of type entity, then the role of the child node switches to the one of the parent node,
the neighbor_list gets cleared and filled with the triples belonging to our former child
node. Should the algorithm reject a node or add a literal node to the sample, it simply
continues to randomly select another triple from the list.

5.3.4 Other Sampling Techniques

The other sampling algorithms the frameworks contains are BFS, SBS, RFS and RW.
The implementations of BFS and SBS are very similar to the FFS algorithm. The
difference lies in the number of neighbors they sample. While BFS samples all the
successors of a node and therefore provides a complete view of a part of the knowledge
graph, SBS is user-dependent and lets the user decide how many neighboring nodes

31

32

CHAPTER 5. IMPLEMENTATION

sd metropolis_hastings_random_walk /

“MHRW ‘Database

enter parent_node,
number_of nodes

B

initialize MetworkX
|: MultiDiGraph() :

get_subject_id(parent_node) and degree

< return sub_id, parent_degree U

get triples with sub_id equal to parent_node id

SR 7 S 1

return triples

loop /

alt

assign triples to neighbor_list :

;]add parent_node to sample_graph)
[len{sample_graph.nodes()) i

< number_of_nodes] :
[len{neighbor_list) = 0]
randomly choose triple from neighbor_list

get from the triples object the text, type and deg‘re_-e
» return child node information U
generate a random number

|: I |between 0and1 }

alt

[if random number <= min(1, parent_degreéfchi\d_degree)]

add_neighbor_with_property(triple)
; |see figure 5.3

opt

[if child_node type == 2]

get triples with sub_id equal to child_node_id

s L

return triples
clear neighbor_list and fill with new triples
; |replace parent_node with child_node

[else continue]

| feise break]

i i o e e R

Figure 5.5: Sequence Diagram of Metropolis Hastings Random Walk

32

5.4. COMPARISON OF THE SAMPLING TECHNIQUES 33

should be sampled for each entity node (by setting this number in the config.ini file).
RFS starts as well from a seed node and collects for each entity node sampled all the
triples with neighbors in a list. To add a node to the sample, the RFS algorithm randomly
selects a triple from that list and executes the add_node_with_property function with it.
If the newly added object node is of type entity, it again adds its neighbors to the list
to eventually be selected later. In case the object was of another type, the algorithm
simply continues with another randomly selected triple from the list.

The implementation of RW is similar to a very simplified version of MHRW. RW
just walks from one node to its successor node without considering any degrees. If the
successor node is a literal node, the algorithm adds this node to the sample and continues
sampling neighbors from the current subject node. In case the next node is an entity
node, it adds this node as well but the sampling now continues from that freshly sampled
successor node. Similar to the RW proposed by another work, I implemented RW with
a backtracking probability [Leskovec and Faloutsos, 2006]. They propose to restart the
random walk from its initial node with a probability of 0.15 after every sampled node.
With this approach the authors want to ensure exploration into other directions of the
network. While implementing, I tested this variant and did not get satisfactory results:
the algorithm very quickly slows down, even for sampling only 1000 nodes. This could
have been expected, since restarting from the initial node with a quite high probability
makes it difficult to explore more distant regions of the network. As a result, I decided to
change the proposed technique by keeping the probability, but restarting from a random
(already sampled) entity node instead of the initial one. This way, the original idea to
explore other directions is maintained, but the algorithm is much less likely to get stuck
in some initial network part.

The next section compares these implemented sampling techniques by various impor-
tant graph metrics and their execution time.

5.4 Comparison of the Sampling Techniques

In this section, the implemented sampling techniques are compared to each other. For
the comparison, I chose the mostly used graph metrics as applied in the related work
mentioned in Tables to[3.3] Average degree, degree distribution, assortativity, clus-
tering coefficient and average shortest path belong to important graph metrics and are
discussed in this section. I also include the execution time as a metric to compare the
algorithms. Table lists the machine specifications of the notebook I used to execute
the algorithms.

Operating System Windows 10 Pro 64 Bit
RAM 8 GB
CPU Intel Core i7-5500U @ 2.40GHz

Table 5.2: Machine Specification

Tables [5.3] to [5.5] list the elected graph metric results for the sampling techniques, for

33

34 CHAPTER 5. IMPLEMENTATION

1’000 sampled nodes, 10’000 sampled nodes and 100’000 sampled nodes. From these
metrics, there are several conclusions to draw. But first, the metrics itself are shortly
explained.

5.4.1 Graph Metrics

The average degree refers to the average of the sum of both in-degrees and out-degrees
for the nodes in the sampled network.

The degree distribution is the distribution of the degrees over the whole network. The
plots of the degree distributions in Figure [5.6| show the distributions separately for each
in-degrees and out-degrees.

The concept of assortativity measures the extent to which nodes tend to connect to
other nodes of similar or of opposite sort [Newman, 2002]|. In this comparison, I measure
the assortativity degree (which is the most common form of assortativity). The values
it can take range from —1 < p < 1 and therefore, from disassortative to assortative. A
network is assortative if high-degree nodes are generally connected to other high-degree
nodes and low-degree nodes are rather connected to low-degree nodes. Disassortativity
means that high-degree nodes are more likely to have low-degree node neighbors as well
as the other way around, low-degree nodes tend to connect to high-degree nodes.

The clustering coefficient is a graph metric that analyzes to which extent nodes tend
to cluster together [Watts and Strogatz, 2011]. If many neighbors of a specific node are
connected to each other as well, the clustering coefficient is high. If these neighbors are
poorly connected, then this measure is low. It is therefore a measure of the degree to
which neighbors of a node are neighbors of themselves as well. The value the clustering
coefficient can take ranges from 1 (neighborhood is fully connected) to 0 (no connections
between neighboring nodes themselves).

The average shortest path length measures the mean shortest number of edges that
have to be followed to connect any two pair of nodes in the network. The average path
length correlates with the edge density of a network |[Smith, 2007]. The more densely a
network is connected, the shorter is the average path length.

5.4.2 Comparison of the Graph Metrics

Analyzing the Tables to there are several things worth noting. Regarding exe-
cution time, all the algorithms slow down when the number of nodes they are sampling
increases. The slowing down in comparison to the growth of the sample is between 1.75
times (in case of BFS) to 8.8 times (in case of FF'S) when looking at the samples with
1’000 nodes to the ones with 100’000 nodes. Also, the tables indicate that the more
neighbors for each node an algorithm samples, the faster it is. This becomes apparent
on the decreasing execution times from FFS, SBS and BFS. RW and RFS, both algo-
rithms which only add one neighbor at a time, need in most cases significantly more
execution time.

According to the assortativity, one can observe that the Wikidata knowledge graph
is rather disassortative because entity nodes with high degrees are connected to many

34

5.4. COMPARISON OF THE SAMPLING TECHNIQUES 35
Graph Metrics for 1’000 Nodes
Sampling Execution Avg Degree | Assortativity| Clustering | Avg Short-
technique Time Coefficient | est Path
FFS 10.0 sec 2.61 -0.104 0.031 9.07
SBS (n=5) 7.6 sec 2.60 -0.194 0.021 7.36
SBS (n=10) || 7.5 sec 2.79 -0.325 0.032 5.67
BFS 4.8 sec 2.13 -0.687 0.008 2.55
RFS 19.1 sec 2.12 -0.268 0.007 6.35
RW 24.6 sec 2.59 -0.176 0.0284 7.89
MHRW 329.6 sec 2.38 -0.363 0.038 21.48
Table 5.3: Measures for Samples with 1’000 Nodes
Graph Metrics for 10’000 Nodes
Sampling Execution Avg Degree | Assortativity| Clustering | Avg Short-
technique Time Coefficient | est Path
FFS 159.5 sec 3.1 -0.032 0.040 7.85
SBS (n=5) 95.3 sec 3.03 -0.032 0.031 7.48
SBS (n=10) || 85.7 sec 2.87 -0.066 0.024 6.56
BFS 58.4 sec 2.56 -0.345 0.039 3.94
RFS 169.7 sec 2.32 -0.280 0.005 5.15
RW 371.4 sec 2.91 -0.070 0.030 7.04
Table 5.4: Measures for Samples with 10’000 Nodes
Graph Metrics for 100’000 Nodes

Sampling Execution Avg Degree | Assortativity| Clustering

technique Time Coefficient

FFS 8824 sec 4.15 -0.055 0.052

SBS (n=5) 1254 sec 3.55 -0.027 0.042

BFS 841 sec 2.824 -0.431 0.023

RFS 4251 sec 2.73 -0.090 0.014

RW 11494 sec 3.18 -0.043 0.035

Table 5.5: Measures for Samples with 100’000 Nodes

low-degree literal nodes. This is also confirmed by the negative assortativity numbers
listed in the Tables to The algorithms, nevertheless, show great differences
in that graph metric as well. In general, it can be stated that the more neighbors an
algorithm samples, the more disassortative its samples are. This is especially true in case
of BFS which samples every neighbor. Also, this assumption agrees with the findings
of related work which has shown that especially samples collected with BFS tend to be
more disassortative than the original networks |Lee et al., 2006].

The clustering coefficient measured for all algorithms and sample sizes tend to be ad-

35

36 CHAPTER 5. IMPLEMENTATION

jacent to zero. Therefore, a nodes neighbors are very loosely connected between them-
selves. This may not be surprising since the Wikidata knowledge graph is very sparse.
Although all the clustering coefficient numbers are quite low, a negative correlation with
the average degree can be observed: The lower the average degree, the lower the clus-
tering coefficient. This behavior is consistent with empirical observation of related work
[Bloznelis, 2013||Wang et al., 2011].

The average degree seems to result in too small measures for RFS and BFS. For BFS,
this can be explained because of the boundary bias: the nodes sampled in the last round
are missing a large number of neighbors [Lee et al., 2006]. Therefore, BFS is biased
towards a too small average degree. In case of RFS, this sampling technique results
in very sparsely connected sample graphs and hence, low average degree because this
technique may spread out over the network quickly.

The numbers for the average shortest path length in the tables are quite different.
Average path length decreases as average degree increases [Lee et al., 2006|. This is true
for some of the measurements in the tables, but certainly not for BF'S. Since the average
degree for BFS is strongly biased (boundary bias), above general rule does not hold in
this case. On the contrary, it is only logical that BFS has the smallest values for the
average shortest path because it densely samples all nodes of a specific part of the graph.

Only Table [5.3] contains measures for MHRW. I chose to discard this technique for
sampling more than 1’000 nodes since it performed very poorly in terms of execution
time. Because many neighboring nodes are rejected when using this technique, MHRW
suffers from a very slow diffusion over the network [Lee et al., 2012]. If the current
subject node has a much lower degree than all its entity successor nodes, this algorithm
may also get stuck. Therefore, I recommend not to apply this technique for Wikidata
sampling.

Figure illustrates the degree distributions of FFS, SBS (n = 5), BFS, RFS and
RW for each in-, and out-degrees. The distributions of the in-degrees are quite similar
for all the techniques, except for RFS which contains less high-degree outliers.

The difference in the plots lies mainly in the distributions of the out-degrees. For
FFS, this distribution follows the geometric distribution as proposed by related work
[Leskovec and Faloutsos, 2006]. Most of the nodes in the sample have an out-degree
of 2 or 3, as can be seen at the peek of the curve. After that, the curve falls steeply
and only very few nodes have an out-degree around 20. The out-degree distribution
of SBS looks a bit peculiar since it suddenly stops at degree 5. This is because this
algorithm always selects 5 (or less if not as many are available) neighbors to add to the
sample. The out-degree distributions for BFS, RFS and RW look similar except for the
number of sampled low-degree nodes. BF'S samples much less low-degree nodes than the
other ones. This is consistent with the findings in related work: BFS underestimates
low-degree nodes. Furthermore, these tree plots show an oversampling of high-degree
out-nodes compared to in-degree out-nodes. From this can be concluded that these three
algorithms tend to be biased towards high-degree nodes which is as well consistent with
the findings of related work listed in Tables [3.1] to

The following bullet points evaluate if the requirements regarding the sampling of the
data defined in Section [4.1] are fulfilled:

36

5.4. COMPARISON OF THE SAMPLING TECHNIQUES

37

Number of nodes

Number of nodes

Degree Distribution

—— In-degree
—— Out-degree

10? 10°

Degree

10!

(a) Forest Fire Sampling

Degree Distribution

10° § —— In-degree

—— Out-degree

Degree

(c) Breadth First Sampling

Number of nodes

Number of nodes

Degree Distribution

—— In-degree
—— OQut-degree

104 4

103 4

10° 4

10? 10?

Degree

(b) Snowball Sampling (n = 5)

Degree Distribution

10° 5 —— In-degree

—— Qut-degree

101 102

Degree

(d) Random First Sampling

Degree Distribution

105 4

Number of nodes

—— In-degree
—s— Out-degree

T
10°

T
10t
Degree

T
102

T
103

(e) Random Walk

Figure 5.6: Degree Distribution of Different Sampling Techniques

37

38

CHAPTER 5. IMPLEMENTATION

L]

RS-1: The framework is able to extract node and edge data from a database
provided by the DDIS group. With this data, a sample graph of the Wikidata
knowledge graph can be recreated. Requirement RS-1 is therefore fulfilled.

RS-2: The framework makes use of only traversal-based sampling techniques and
random walks. This ensures having samples that are connected. RS-2 is therefore
fulfilled.

RS-3: In the configuration file config.ini, the user can set the number of nodes
that the sample has to contain and a seed node from where the sampling algorithm
starts. This fulfills requirement RS-3.

RS-4 Unfortunately, the framework is not able to find paths between two entered
seed nodes and creating an overlapping sample. With the schema of the database,
it is difficult to find a (shortest) path between nodes. One way to achieve this
requirement would possibly be to keep an eye out for every node sampled if the
other node searched for is one of its neighbors and then follow the corresponding
edge to it. Nevertheless, such an approach would slow down the computation since
every nodes’ neighbors have to be checked while sampling. RS-4 is therefore not
fulfilled.

RS-5: This requirement can hardly been evaluated since computing graph metrics
for the whole Wikidata knowledge graph would consume way too much resources.
The comparison between the techniques may give the reader hints about which
techniques are rather suitable.

RS-6: The user can set the sampling technique in the configuration file. Among
the techniques available are FFS, SBS, BFS, RFS, RW and MHRW. Requirement
RS-6 is therefore fulfilled.

5.5 Creating Snapshots

This section explains how the revisions are undone to result in historic versions of what
the sample graph looked like back in time. The first subsection shortly discusses the
database schema from where the revision data is accessed, while the second subsection
deals with the creation of earlier versions of the sample graph.

5.5.1 PostgreSQL Revision Database

Figure shows the database schema from the PostgreSQIF_U] database provided by
DDIS. PostgreSQL is an open-source object-relational database management system.
The object in that definition refers to additional inheritance features which MySQL
does not provide.

Ohttps: // www.postgresql.org/

38

https://www.postgresql.org/

5.5. CREATING SNAPSHOTS 39

statementdated

revision_history 201710 itemid varchar

comment_rev varchar statproperty varchar
item_id varchar statvalue varchar
rev_id varchar revid varchar
time_stamp timestamp timestamp timestamp

Figure 5.7: PostgreSQL Database Schema for Retrieving the Revision Data

Only the tables and columns necessary for getting the revision data are illustrated in
Figure The table statementdated contains subject-property-object triples expressed
as itemaid, statproperty and statvalue. Further it contains a revision id called revid cor-
responding to rev_id in the other table. Also, a column with the timestamp is available
in both tables. The table revision_history_201710 additionally owns the column com-
ment_rev. This column actually states what kind of revision took place. Summarized,
the table statementdated contains triples that were changed at some point in time, but
it is unknown what happened to these triples. To gain knowledge about the actual revi-
sion, the framework queries the table revision_history_201710 with the revision id. The
column comment_rev then returns the critical information, e.g. if the value of a triple
was updated or if a property-value pair was created.

5.5.2 Undoing the Revisions

The undoing of revisions is the actual core part of the framework. During this stage, the
historic snapshots of the sampled graph are created by going back in time. As input,
the framework needs as information the number of revisions to undo for each snapshot,
a timestamp to specify until when to create the snapshots and, obviously, the sampled
graph itself. Table lists the type of revisions with a short description, an existing
example from the column comment_rev of the database, as well as a statement of how
to undo that type. Most of the revision descriptions from the column comment_rev
start with the name of the API module that has been requested for this revision, such
as whsetclaim, wbremoveclaims or whmergeitems. A complete list of these modules is
available on the Wikimedia documentationl]

In a first step, the framework needs to get all the revision ids which may belong to
the triples in the sampled graph. For this, the framework executes the following query

Yhitps: // www.mediawiki.org/ wiki/ Wikibase/ API/ de# API__modules

39

https://www.mediawiki.org/wiki/Wikibase/API/de##API_modules

CHAPTER 5. IMPLEMENTATION

40

API module Description Example of comment_rev Undoing event
e whsetclaim-create Creates Wikidata o /* wbsetclaim-create:1||1 */ Remove edge
claims [[Property:P6]]: [[Q115886]]
e whcreateclaim-create e /* wbcreateclaim-create:2|*/
[[Property:P281]], 8000
e whsetclaim-update Updates a e /* wbsetclaim-update:2||1 */ Query in table
statement /claim [[Property:P2046]]: 8,790 hectare statementdated for the

e whbeditentity-update

o /* wbeditentity-update:0|*/
BOT:Add labels (Upper case)

previous value of the
object. Remove edge
and create new edge to
new node containing
the previous value.

whbsetclaimvalue

Sets the value of a
Wikidata claim

/* wbsetclaimvalue:1[*/
[[Property:P31]]: [[Q14770218]]

Remove edge

wbremoveclaims-remove

Removes Wikidata
claims

/* wbremoveclaims-remove:1[*/

[[Property:P131]]: [[Q39]]

Add claim by adding
node and property edge
of removed statement

wbmergeitems

Merges multiple items

/* wbmergeitems-from:

0/|Q25647097 */

Remove edge of affected
triple since it was part
of another node.

- (Undo revision)

Undoing a revision and
retrieve previous state

/* undo:0][464116012|Chire */

Get the revision that
was undone by id and
restore it.

Table 5.6:

Types of Revisions

40

5.5. CREATING SNAPSHOTS 41

for each triple in the sample graph:

insert_data = (subject, predicate, timestamp)

sql = "SELECT revid FROM statementdated WHERE itemid = %s " \
"AND statproperty = %s AND timestamp > 7s"

cursor.execute(sql, insert_data)

This way, the framework collects not only all the revision ids for the triples in the
sample graph, but also the revision ids for subject-property pairs with values not con-
tained in the sample. This is important, for example, in the wbsetclaim-update case. If
the revision is an update and the value of the triple therefore reconstructed to its old
value, the revision id for that reconstructed triple was collected as well with that first
query. In a second query, the framework then retrieves the necessary information from
the table revision_history_2017 by the previously collected revision ids and orders it by
time descending;:

sql_get_history = "SELECT comment_rev, item_id, time_stamp, rev_id " \
"FROM revision_history_201710 WHERE rev_id IN " \
"J.(revision_set)s ORDER BY time_stamp DESC"

cursor.execute(sql_get_history, {'revision_set': tuple(revision_ids), })

Hence, a list of revision information ordered from most recently to the user configured
timestamp is gained and can then be used further to manipulate the sample graph.
For each of these revisions, the framework checks which of the cases listed in Table
applies and moreover, if the corresponding triple is also present in our sample. If so,
the sample graph gets manipulated by undoing that revision. The framework uses the
Python package r@ to read out the necessary parts from the comment_rev value of each
returned revision information. These parts are of course the actual type of the revision
(e.g. whcreateclaim-create) and in most cases also the property and object value. With
the re package, it is possible to extract those values by matching a regular expression.

Having extracted those values, the framework undoes the revision depending on the re-
vision type. In most cases, since we go back in time, the framework has to do the opposite
of what the revision states. The simplest types are wbsetclaim-create, wbcreateclaim-
create and wbsetclaimvalue. In those cases, the framework must only remove the prop-
erty edge of the corresponding triple by the NetworkX function remove_edge(subject,
object, key=prop_text). By only removing the edge, it is ensured that the object is still
part of the sample in case other nodes are connected to it.

When the revision is of type wbhremoveclaims-remove, the frameworks adds the object
node and the edge to the sample graph. From this follows that the sample graph not
only continuously shrinks, but may also gain new triples.

The case of wbsetclaim-update needs more effort. This case informs us that the object
of the affected triple was updated (to the new value as mentioned in comment_rev), but
the previous state of that object is yet unknown. Therefore, another query which returns
the previous value is necessary:

2https: // docs.python.org/ 3/ library/ re.html

41

https://docs.python.org/3/library/re.html

42 CHAPTER 5. IMPLEMENTATION

data_triple = (subject_text, prop_text, timestamp)

sql = "SELECT statvalue FROM statementdated WHERE itemid = %s AND " \
"statproperty = %s AND timestamp < ’%s ORDER BY timestamp DESC" \
"LIMIT 1"

cursor.execute(sql, data_triple)

The old value is looked for in the table statementdated. The timestamp in above query
refers to the timestamp of the update. So, with setting the timestamp smaller than the
timestamp of the update and ordering it by time descending and limiting it to 1, the
preceding value is returned. Having retrieved that value, the framework simply removes
the edge from the initial subject-object node pair, adds the previous value as node and
creates an edge between subject and previous value.

Another revision type is wbmergeitems. This type merges two entity items together.
Having a look at the wbmergeitems-example in Table the comment on the revision
states which item was merged into the affected item in the sample. There exist two
types of merges, whmergeitems-to and wbmergeitems-from. Figure [5.8] illustrates these
two cases.

Merge from Q2

Merge to Q1

Figure 5.8: Two Cases of Merging

Since we sample our graph from the current state of the Wikidata knowledge graph,
we will never retrieve a revision comment with wbmergeitems-to. When node Q2 was
merged into node Q1, Q2 can not be part of our sample graph since it does not exist
anymore. Therefore, there will not be a revision comment with this type of change and
this case can safely be ignored. Nevertheless, the framework needs to handle the case of
merging from. When a merging from appears in the list of revisions to undo, this states
that the affected triple was part of another node at that point of time. In Figure [5.8
this is illustrated by the former smaller node Q1 which doesn’t yet contain the triples of
node Q2. Consequently, the framework just has to remove the edge of the affected triple,
since it was added from another node which is not (and can not be) part of the sample.
This case is actually very similar to the undoing of a simple whcreateclaim revision,
except that another query is needed to get the affected triple in the table statementdated
by the subject and the revision id.

42

5.5. CREATING SNAPSHOTS 43

The last type of revision listed in Table is the undoing of a specific revision that
happened in the past. Figure illustrates this type by a timeline of undoing events.
The arrow points in the direction from past to future.

t=0: t=1: t=2:
Add property-object pair Undo Revision of Add Undo Revision of Revision

\4

new triple is triple is not part triple is part
part of graph of graph of graph

(ar) (o) (o)
_/ —/ N

Figure 5.9: Undoing Revision

At time t = 0, there is an adding of a property-object pair to the entity node Q1. It
can be considered as a wbcreateclaim event. It follows at time ¢ = 1 an undo revision of
that previous event. The database stores this information by a revision id. An example
of such a comment_rev for an undoing event is listed in the revision types Table
There, the "undo” classifies the type of the revision and the following number 464116012
specifies the revision id of the revision that was undone. When processing the revisions
and coming across such a revision type, the framework has to query with that id for
the actual revision that took place in an earlier state of the graph. In contrast to all
previously described revision types, the framework then has to apply not the opposite,
but the exact same revision. This is because we go back in time and the sample graph
has to take over the state shortly before ¢ = 1. Hence, at time ¢ = 1, the framework will
add the property-object pair to the knowledge graph. Only later, when reaching time
t = 0, the edge of that triple will be removed again.

Nevertheless, there also exist cases where the querying for the revision again returns
an undo event with another revision id: An undoing of an undoing of a revision, so to
speak. This case is illustrated in Figure 5.9| at time ¢ = 2. The triple is again part of
the graph from that point of time on, since the previous undo revision at time t = 1
is invalidated by the newer undo event. Summarized, to get previous snapshots, the
framework has to remove the edge of that triple at point ¢ = 2, add it at ¢ = 1 and
remove it again at time ¢ = 0.

When going back in time, the framework has to keep track of the number of undoing
revisions followed by undoing revisions. If the number of undoing revisions behind each
other is odd, like in the simple case of just one undoing event, then the same revision
type as at the time of its origin has to be applied. If the number is even, as for the
undoing of an undoing, the opposite event of that revision is relevant.

Finally, by applying all the different revision changes described in this section from
most recent to going back to a defined timestamp, the framework creates snapshots of
earlier versions of the sample graph. The snapshots each contain a specific number of
changes. This number can be defined in the configuration file. Therefore, the framework
returns snapshots with each the same number of changes, except for the last snapshot
which may contain less. Additionally, the snapshot files are named with the timestamp
from the oldest change they contain. Hence, the timestamp identifies the date and time
of when the snapshot of our sample graph was valid.

43

44 CHAPTER 5. IMPLEMENTATION

The following bullet points evaluate if the requirements regarding the creation of
snapshots defined in Section [4.2] are fulfilled:

« RC-1: The framework takes into account constraints that the user sets on the
graph. In the configuration file, the user can set the number of changes in each
snapshot and a timestamp until when the previous versions of the graph should be
returned. RC-1 is therefore fulfilled.

« RC-2: The output files of the snapshots are named with the date and time indi-
cating the timestamp of when they were valid. RC-2 is therefore fulfilled.

« RC-3: The undoing of revisions is applied in the correct order. This is achieved
by querying for the revisions directly by their time descending. RC-3 is therefore
fulfilled.

« RC-4: The framework handles the implementation of the undoing of changes
accurately as described in this section.

5.6 Returning the Snapshots

As already mentioned, the framework uses RDFLib, a Python package for working with
RDF, to transform the sample graph and its snapshots into an RDF format. Section
explains shortly how the triples from the sampled NetworkX graph are loaded into
an RDFLib graph and then serialized into a standard RDF format.

5.6.1 NetworkX to RDFLib

The framework uses the RDFLib package to create an RDFLib graph and serialize it
into one of various formats. RDFLib also provides other features such as querying with
SPARQL or parsing (reading data from an RDF file into an RDFLib graph). In RDF,
nodes are either URI references, blank nodes or literals. To transform the NetworkX
graph into an RDFLib graph, the framework has to access each NetworkX triple and
load it into the previously initialized RDFLib graph. Of course, namespaces can also
be defined with RDFLib. For each triple, the framework defines the subject and the
predicate as URI references with the namespace and the actual subject or predicate
value. Then, depending on the type of object, the framework adds the triples to the
RDFLib graph. For this, the framework gets the datatype (e.g. dateTime, coordinates)
and if available the language tag and adds the triples according to them. If the object is
again an entity type, then the object is defined as an URI reference. For all other object
types, it is represented and added to the graph as a literal. Data types and language
tags are passed to this literal as well. This way, the RDFLib graph gets filled with all
the triples and their auxiliary information. This is an example of how statements are
represented in RDFLib:

44

5.6. RETURNING THE SNAPSHOTS 45

(rdflib.term.URIRef('http://www. wikidata.org/entity /Q21510865"),

rdflib .term.URIRef("http://www. wikidata.org/prop/direct /P1535"),

rdflib .term. URIRef('http://www. wikidata.org/entity /Q54812269 "))
)
)

1
1

(rdflib.term.URIRef('http://www. wikidata.org/entity /Q52060874"'

rdflib .term. URIRef('http://www. wikidata.org/prop/direct /P1813"

rdflib .term. Literal ('single._best_value', lang='en'))

(rdflib.term.URIRef('http://www. wikidata.org/entity /Q20855878 "),
rdflib.term. URIRef('http://www. wikidata.org/prop/direct /P571"),
rdflib.term. Literal ('+2016—09—24T00:00:00Z "',

datatype=rdflib .term.URIRef('http://www.w3.org/2001/XMLSchema#dateTime"')))

The above example shows three statements: the first with an object of type entity,
the second with a literal object having a language tag, and the third with a literal object
specifying its type with an additional datatype URI reference. All the subject, predicates
and objects are RDFLib types of either URI references or literals. Since the framework
accesses only direct statements, it is not concerned with blank nodes.

Having all the NetworkX triples represented in an RDFLib graph, the framework can
simply serialize the data into various formats with the RDFLib serializers package. The
serialize method is passed to the newly created graph with a format parameter defining
the output format. According to the RDFLib documentationEL N-Triples is currently
using the most efficient serialization, followed by RDF/XML. The output format can
be specified in the configuration file. The framework currently supports the following
formats: TurtldEl7 Notation ﬁ N—Triples*E|7 TriGIZl7 RDF/XMIE and pretty-xml (an
abbreviated RDF /XML syntax).

Furthermore, one of the requirements for the framework is to return the Wikidata
graphs in a format natively supported by NetworkX. Therefore, the framework also
offers the possibility to output the data in JSON format. By making use of the NetworkX
node_link_data() functionﬂ the framework returns a dictionary with node-link formatted
data suitable for JSON serialization. With the built-in json package, the dictionary can
then be transformed into a JSON file.

The following two bullet points evaluate if the requirements regarding the returning
of the data defined in Section [4.3] are fulfilled:

« RF-1: The framework is able to return the data in various RDF formats. These
formats include Turtle, Notation 3, N-Triples, TriG, XML and pretty-xml. Re-
quirement RF-1 is therefore fulfilled.

« RF-2: The framework offers the possibility to return the results in a format na-
tively supported by NetworkX. The chosen format is JSON, it returns the node-link

3 https: // rdflib.readthedocs.io/ en/ stable/ faq.html

Mhttps: //www.w3.org/ TR/ turtle/

Yhttps: // www.w3.org/ TeamSubmission/n3/

Y https: // www.ws.org/ 2001/ sw/ RDFCore/ ntriples/

Yhttps: // www.w3.org/ TR/ trig/

Bhttps: //www.w3.org/ TR/ rdf-syntaz-grammar/

Y https: // networkz. github.io/ documentation/ stable/ reference/ readwrite / generated / networksz.
readwrite.json_graph.node_link_data.html

45

https://rdflib.readthedocs.io/en/stable/faq.html
https://www.w3.org/TR/turtle/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/2001/sw/RDFCore/ntriples/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/rdf-syntax-grammar/
https://networkx.github.io/documentation/stable/reference/readwrite/generated/networkx.readwrite.json_graph.node_link_data.html
https://networkx.github.io/documentation/stable/reference/readwrite/generated/networkx.readwrite.json_graph.node_link_data.html

46

CHAPTER 5. IMPLEMENTATION

data such that no information is lost by storing the datatype and language tags as
well. Requirement RF-2 is therefore fulfilled as well.

46

§

Limitations

This chapter discusses some points that may have an impact on the functionality of the
framework. The framework currently samples only direct statements. Therefore, a lot
of Wikidata information like qualifier statements or references is missing. Furthermore,
only properties from the Wikidata namespace are available in the database used for
extracting the sample graph. This means that properties referring to other namespaces
like label and description will not be part of the sampled graph. This results in sampling
from a rather reduced Wikidata graph which is not necessarily a problem but should be
considered when working with the framework. Item nodes for example contain lots of
labels and descriptions, each for many different languages. This could result in a bias
towards such label and description nodes during the sampling because they make up a
large part of the neighboring nodes. Even worse, the sampling methods may also be
more likely to backtrack more often when biased towards such sink nodes since they do
not contain any outgoing edges. This could slow down the sampling process. For this
reason, the structure of the database currently used for extracting the sample may even
be the wiser choice. Though, users of the framework should be aware of the missing
triples.

Another limitation comes from the database used for getting the revision data. At the
moment, it stores revisions only until October 2017 and should therefore be updated.
Furthermore, it is unknown what some of the earlier revision entries stored in that
database have done to the knowledge graph. The column comment_rev contains in these
cases the string "no comment”. Therefore, such unidentified revisions can not be undone
in the sampled graph and are currently ignored by the framework.

Regarding the sampling techniques, the MHRW algorithm performs very poorly and
should not be used when working with the framework. This algorithm oftentimes rejects
nodes to be in the sample and therefore scores badly in terms of execution time. Even
worse, when a node has only entity neighbors with a much higher degree than the
current node, the MHRW algorithm eventually gets stuck in exploring further nodes
since it rejects sampling them. This undesirable behavior of the MHRW is described
in related work as well [Lee et al., 2012]. Lee et al. propose the MHDA algorithm to
circumvent this problem, mainly by remembering already visited nodes and increasing
the probability of moving to a neighbor.

Finally, one of the requirements is not fulfilled by the current version of the framework.
This requirement addresses the creation of overlapping samples. Starting from two seed

48 CHAPTER 6. LIMITATIONS

nodes sampling their neighborhood, the framework is recommended to create a sample
which has nodes in common for both neighborhoods. To fulfill this requirement, the
framework would have to calculate paths between the two seed nodes. Nevertheless,
there exists related work regarding this issue. Several papers propose solutions to the
problem of finding shortest paths using relational databases [Gao et al., 2011] [Jindal
et al., 2015].

48

7
Future Work

The framework implemented in this work builds a foundation for analyzing the evolution
of knowledge graphs as indicated in Section [1.1

Regarding the sampling process of the framework, it would be interesting to evaluate
how the structure of the Wikidata graph affects the sampling. Sampling algorithms that
have been proven to result in good samples for e.g. social networks must not necessarily
be suited for the knowledge graph sampled in this work. Wikidata consists of many low-
degree sink nodes and comparatively little high-degree entity nodes. Hence, studying the
impact of this structure on the sampling techniques in more detail could be of further
interest. In addition, a sampling technique especially suited for that structure could be
evaluated.

If the framework is used for graph evolution studies, then an investigation on the bias
introduced from sampling on the snapshots may be of future interest. The question
to ask here is if the snapshots are affected by sampling methods that are biased. A
sampling technique biased towards high-degree nodes generates samples with an above
average amount of such nodes. High-degree nodes may have undergone more changes
than low-degree nodes and the series of snapshots would therefore contain too many
revisions in contrast to an unbiased sample graph series of snapshots. When analyzing
historic versions of a sampled graph this possible behavior should be considered as well.

Apart from that, the framework could be improved by implementing additional func-
tionalities. A possible idea for an auxiliary feature is to extend the sampling with a set
of excluding or including conditions, e.g. exclude certain property types from sampling.

Finally, it may be practical for users to instantly see which of the triples have changed
in the generated snapshots. For this purpose, the framework could highlight the triples
that have been revised in each of the snapshots, e.g. by coloring the affected triples in
the output files.

8

Conclusions

This thesis builds the foundation for analyzing the evolution of the Wikidata knowl-
edge graph. Therefore, I implemented a framework that creates a sequence of versioned
Wikidata graphs by going back in time and undoing the revisions. This yields in several
output files containing the RDF data of the graph in earlier stages of its history. Gener-
ating snapshots of the whole Wikidata knowledge graph is impractical due to its sheer
size. Hence, the framework first extracts a sample out of the graph to save processing,
memory and time resources. The implementation of the framework focuses on three
main tasks: the extraction of a sample out of the Wikidata graph, the undoing of its
edit history and the returning of snapshots in a standard RDF format.

Sampled graphs are supposed to have similar properties as the original network. Only
then, the findings and observations evaluated on the sample can be believed to hold also
for the original graph. After comparing and discussing related work on sampling of large
graphs, I implemented different sampling techniques. Since the sampled graph should
be connected, the framework works with traversal-based sampling algorithms. I found
that the biases and behaviors of the implemented techniques correspond to the findings
evaluated by related work about sampling (as discussed in Section . I recommend
not to use MHRW for sampling since it performs very badly in terms of execution time.
This behavior can be explained because the algorithm rejects many nodes and even may
get stuck in cases when the degrees of the neighboring entity nodes are much higher
than the degree of the current node.

Regarding the other implemented techniques, most of them fail in preserving one or
more graph metrics by being biased. Although BFS extracts a sample graph the fastest,
it is evaluated to be too disassortative, having a too small average degree (because of the
boundary bias) and to underestimate low-degree nodes. Furthermore, by analyzing the
plots in Figure I observed that BFS, RFS and RW are biased towards high-degree
nodes, whereas RFS additionally results in a too small average degree. Users of the
framework should be aware of these limitations.

After having extracted a sample, the framework undoes the different revision types.
These types include the creation of a statement, the removal of a statement, the update
of a value, the merging of two entity nodes and the undoing of a preceding revision.

Finally, the framework generates snapshot files in a standard RDF format. Currently,
it supports Turtle, Notation 3, N-Triples, TriG, RDF /XML and pretty-xml. The snap-

52 CHAPTER 8. CONCLUSIONS

shots each contain the sampled graph with a specified number of undone revisions and
they are generated until reaching a timestamp as declared in the configuration file.

Currently, the framework only samples direct statements since the database used for
sampling does not contain information about qualifier statements or references sup-
porting a claim. In future work, such additional information could be included in the
frameworks sampling process as well. Also, it may be of interest to implement further
features such as highlighting the triples that have been changed in the output files or
extending the sampling with a set of excluding or including conditions (e.g. exclude
certain property types from sampling).

92

References

[Ahmed et al., 2011] Ahmed, N., Neville, J., and Kompella, R. (2011). Network sam-
pling via edge-based node selection with graph induction.

[Ahmed et al., 2013] Ahmed, N. K., Neville, J., and Kompella, R. (2013). Network sam-
pling: From static to streaming graphs. ACM Trans. Knowl. Discov. Data, 8(2):7:1-
7:56.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 284(5):28-37.

[Bloznelis, 2013] Bloznelis, M. (2013). Degree and clustering coefficient in sparse random
intersection graphs. The Annals of Applied Probability, 23(3):1254-1289.

[Bradner, 1997] Bradner, S. O. (1997). Key words for use in RFCs to Indicate Require-
ment Levels. RFC 2119.

[Doerr and Blenn, 2013] Doerr, C. and Blenn, N. (2013). Metric convergence in social
network sampling. In Proceedings of the 5th ACM Workshop on HotPlanet, HotPlanet
13, pages 45-50, New York, NY, USA. ACM.

[Erxleben et al., 2014] Erxleben, F., Giinther, M., Krotzsch, M., Mendez, J., and
Vrandeci¢, D. (2014). Introducing wikidata to the linked data web. In Proceedings
of the 13th International Semantic Web Conference - Part I, ISWC 14, pages 5065,
New York, NY, USA. Springer-Verlag New York, Inc.

[Farber et al., 2017] Farber, M., Bartscherer, F., Menne, C., and Rettinger, A. (2017).
Linked data quality of dbpedia, freebase, opencyc, wikidata, and yago. Semantic Web,
9:1-53.

[Gao et al., 2011] Gao, J., Jin, R., Zhou, J., Yu, J. X., Jiang, X., and Wang, T. (2011).
Relational approach for shortest path discovery over large graphs. Proc. VLDB En-
dow., 5(4):358-369.

[Gjoka et al., 2010] Gjoka, M., Kurant, M., Butts, C. T., and Markopoulou, A. (2010).
Walking in facebook: A case study of unbiased sampling of osns. In 2010 Proceedings
IEEE INFOCOM, pages 1-9.

54 References

[Goodman, 1961] Goodman, L. A. (1961). Snowball sampling. Ann. Math. Statist.,
32(1):148-170.

[Heckathorn, 1997] Heckathorn, D. D. (1997). Respondent-Driven Sampling: A New
Approach to the Study of Hidden Populations™. Social Problems, 44(2):174-199.

[Hu and Lau, 2013] Hu, P. and Lau, W. (2013). A survey and taxonomy of graph sam-
pling.

[Jindal et al., 2015] Jindal, A., Madden, S., Castellanos, M., and Hsu, M. (2015). Graph
analytics using vertica relational database. In 2015 IEEE International Conference
on Big Data (Big Data), pages 1191-1200.

[Krishnamurthy et al., 2005] Krishnamurthy, V., Faloutsos, M., Chrobak, M., Lao, L.,
Cui, J. H., and Percus, A. G. (2005). Reducing large internet topologies for faster
simulations. In NETWORKING 2005. Networking Technologies, Services, and Proto-
cols; Performance of Computer and Communication Networks; Mobile and Wireless
Communications Systems, pages 328-341, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

[Kurant et al., 2011] Kurant, M., Markopoulou, A., and Thiran, P. (2011). Towards
unbiased bfs sampling. IEEE Journal on Selected Areas in Communications, 29:1799—
1809.

[Lee et al., 2012] Lee, C.-H., Xu, X., and Young Eun, D. (2012). Beyond random walk
and metropolis-hastings samplers: Why you should not backtrack for unbiased graph
sampling. Sigmetrics Performance Evaluation Review - SIGMETRICS.

[Lee et al., 2006] Lee, S. H., Kim, P.-J., and Jeong, H. (2006). Statistical properties of
sampled networks. Phys. Rev. F, 73:016102.

[Leskovec and Faloutsos, 2006] Leskovec, J. and Faloutsos, C. (2006). Sampling from
large graphs. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, pages 631-636, New York, NY,
USA. ACM.

[Malyshev et al., 2018] Malyshev, S., Krétzsch, M., Gonzélez, L., Gonsior, J., and Biele-
feldt, A. (2018). Getting the most out of wikidata: Semantic technology usage in
wikipedia’s knowledge graph. In International Semantic Web Conference.

[Miller and Manola, 2004] Miller, E. and Manola, F. (2004). RDF primer. W3C recom-
mendation, W3C. http://www.w3.org/TR/2004/REC-rdf-primer/.

[Newman, 2002] Newman, M. E. J. (2002). Assortative mixing in networks. Physical
Review Letters, 89(20).

[Pernischovd, 2019] Pernischova, R. (2019). The butterfly effect in knowledge graphs:
Predicting the impact of changes in the evolving web of data. In Doctoral Consortium
at ISWC 2019.

54

References 55

[Ribeiro and Towsley, 2010] Ribeiro, B. F. and Towsley, D. F. (2010). Estimating and
sampling graphs with multidimensional random walks. CoRR, abs/1002.1751.

[Seaborne and Prud’hommeaux, 2008] Seaborne, ~A. and Prud’hommeaux, E.
(2008). SPARQL query language for RDF. W3C recommendation, W3C.
http://www.w3.org/TR /2008 /REC-rdf-sparql-query/.

[Smith, 2007] Smith, R. (2007). Average path length in complex networks: Patterns
and predictions.

[Stumpf et al., 2005] Stumpf, M., Wiuf, C., and May, R. (2005). Subnets of scale-free
networks are not scale-free: Sampling properties of networks. Proceedings of the
National Academy of Sciences of the United States of America, 102:4221-4.

[Trivedi et al., 2017] Trivedi, R., Dai, H., Wang, Y., and Song, L. (2017). Know-evolve:
Deep temporal reasoning for dynamic knowledge graphs. In Proceedings of the 34th

International Conference on Machine Learning - Volume 70, ICML’17, pages 3462—
3471. JMLR.org.

[Vrandeci¢ and Krotzsch, 2014] Vrandecié, D. and Krotzsch, M. (2014). Wikidata: A
free collaborative knowledge base. Communications of the ACM, 57:78-85.

[Wang et al., 2011] Wang, T., Chen, Y., Zhang, Z., Xu, T., Jin, L., Hui, P., Deng,
B., and Li, X. (2011). Understanding graph sampling algorithms for social network
analysis. In 2011 31st International Conference on Distributed Computing Systems
Workshops, pages 123-128.

[Watts and Strogatz, 2011] Watts, D. and Strogatz, S. (2011). Collective dynamics of
small-world’ networks.

95

A

Appendix

A.1 Contents of the CD

The CD has the following content:
» Zusfsg.txt: This file contains a summary of the bachelor thesis in German.
o Abstract.txt: This file contains a summary of the bachelor thesis in English.
« Bachelorarbeit.pdf: This file contains the complete thesis as a PDF.

+ code/: This directory contains the source code of the framework.

List of Figures

2.1 A Simple RDF Statement| 4
2.2 Wikidata Item with Important Terms| 7
2.3 Wikidata Statement and its RDF Graph Representation| 8
b.1 Data Flow Diagram of Framework| 24
b.2 MySQL Database Schema for Retrieving Wikidata Knowledgel. 26
5.3 Sequence Diagram of Sampling a Neighboring Node with Property Edgel . 28
5.4 Sequence Diagram of Forest Fire Samplingf. 30
5.5 Sequence Diagram of Metropolis Hastings Random Walk{. 32
[5.6 Degree Distribution of Different Sampling Techniques| 37
5.7 PostgreSQL Database Schema for Retrieving the Revision Datal 39
5.8 Two Cases of Merging| 42
5.9 Undoing Revision|. 43

List of Tables

3.1 Sampling Methods studied by Related Work.,| 16
3.2 Sampling Methods studied by Related Work.,| 17
3.3 Sampling Methods studied by Related Work.,| 18
5.1 NetworkX Graph Types 25
b.2 Machine Specification| o Lo 33
5.3 Measures for Samples with 1’000 Nodes| 35
[5.4 Measures for Samples with 10’000 Nodes|. 35
5.5 Measures for Samples with 100°000 Nodes| 35
.6 Typesof Revisions| 40

	Introduction
	Motivation
	Description of Work
	Outline

	Wikidata and the Semantic Web
	Introduction to the Semantic Web
	Querying the Semantic Web

	Wikidata
	The Wikidata Data Model

	Graph Sampling
	Classes of Sampling Algorithms
	Random Sampling
	Topology-Based Sampling

	Discussion of Related Work

	Requirements
	Requirements for Sampling
	Requirements for Creating Snapshots
	Requirements for Displaying the Results

	Implementation
	Framework Overview
	Sampling Prerequisites
	NetworkX
	MySQL Database Schema

	Sampling Process
	Sampling a Neighboring Node and Edge
	Forest Fire Sampling
	Metropolis-Hastings Random Walk
	Other Sampling Techniques

	Comparison of the Sampling Techniques
	Graph Metrics
	Comparison of the Graph Metrics

	Creating Snapshots
	PostgreSQL Revision Database
	Undoing the Revisions

	Returning the Snapshots
	NetworkX to RDFLib

	Limitations
	Future Work
	Conclusions
	Appendix
	Contents of the CD

